特集:今後の社会資本整備・管理を支える技術開発

衛星リモートセンシング技術の土砂災害への応用

水野正樹*林 真一郎** 清水孝一*** 小山内信智****

1. はじめに

衛星リモートセンシング技術は、災害状況把握 を目的の一つとした日本の陸域観測衛星ALOS^{**} (だいち)が運用され、2日間以内に地球上のほ ぼ任意地点の観測が可能となるなど、災害対策へ 応用する条件が近年整ってきた。

そこで本報では、衛星リモートセンシング技術 の特徴である、広域に品質の一定した画像データ が効率的かつ迅速に観測可能、観測時の天候に左 右されず昼夜観測可能等の特徴を応用して流域監 視を行う土砂災害観測手法について、事例をもと に成果を報告する。

2. 衛星リモートセンシングによる国土管理

2.1 衛星に搭載されているセンサ

衛星に搭載されている観測センサは、大きく分けて、可視域を観測する光学センサと合成開口 レーダーの2つに分類できる。合成開口レーダー は、電磁波(電波)のマイクロ波を送信し反射波 を観測するもので、航空機観測が難しい夜間や悪 天候時を含め、昼夜を問わず地表面の状況を観測 することができる。

2.2 土砂災害における衛星利用目的

土砂災害観測における衛星リモートセンシング 技術の利用目的は、主に、「長期的な流域監視」 と「災害発生時の被災状況の把握」の2つであり、 それぞれを目的とした応用事例を以下で説明する。

3. 衛星による長期的な流域監視

3.1 衛星による長期的な流域監視の事例

インドネシア・バワカラエン山で2004年3月に カルデラ壁の大崩壊(推定崩壊土砂量:約2億m 3)が発生したことから、大規模崩壊からの土砂 流出の事例として経年変化を計測している¹⁾。

計測は、Spot5とQuick Birdの2つの衛星により図-1の範囲で実施した。2004年から2009年の

Satellite remote sensing technologies applied to sediment disaster countermeasures **土木用語解説:ALOS 期間におけるモニタリング範囲内の侵食と堆積の 状況を図-2に示す。図-2から侵食域は主に河道に 沿っており、主な侵食位置は年が経つにつれて変 化することが

推定できた。 そして土砂移 動量は表-1 に 示すとおり推 定できた。

図-1 モニタリング範囲(着色部分)

2005年~2006年

図・2 バワカラエンカルデラのDEM差分解析図 (衛星光学センサのステレオペア画像で比較)

& I DDME力だ住により毎日した工作物動	会処理により算出した	土砂移動量
------------------------	------------	-------

デニカケ	田四	浸食量	堆積量	流出土砂量
)—94	州间	(百万m ³)	(百万m ³)	(百万m ³)
2004~2005	1年	-37	1	-36
2005~2006	1年	-11	3	-8
2006~2009	3年	-16	6	-10

- 16 -

このように衛星による長期間、同質の計測を衛 星で繰り返し行うことにより、流域の長期的な土 砂移動の時系列変化を監視できる。

4. 災害発生時の衛星による被災状況の把握

4.1 衛星を使った崩壊地の抽出

衛星リモートセンシング技術が土砂災害発生時 の被災状況把握に有効かどうかを確認するため、 陸域観測衛星ALOS(だいち)の光学センサと合 成開口レーダーを用いて、平成20年岩手・宮城 内陸地震で土砂災害が多発した迫川上流の湯ノ倉 温泉周辺を検討対象地域として、地震後の新規崩 壊地をそれぞれ抽出した。

4.2 光学センサによる抽出

4.2.1 崩壊地抽出に用いた指標

ALOS (だいち)の光学センサAVNIR-2の画像 を使い、災害後の新規崩壊地を抽出した。

崩壊地抽出方法は、植生域と裸地域の変化を災 害前後の画像で比較し、植生の変化域である崩壊 地を抽出するものである2),3)。

崩壊地抽出に使用した指標は、次のとおり。

植生域の指標

植生域の指標には、植生の活性度を表す指標 であるNDVI値(正規化植生指数:Normalized Difference Vegetation Index)を用いた。 NDVIは、緑葉の反射特性を利用しており、値 が高いほど植生の活性度が高いことを示す。

NDVI = (Band4-Band3)/(Band4+Band3) (2) 裸地域の指標

裸地域の指標には、土壌が地表面に表れてい

る箇所の特定に有効なGSI値(粒度指数:Grain Size Index) を用いた。GSIの値は、高いほど 裸地に近いことを示す。

GSI =(Band3-Band1)/(Band3+Band2+Band1) なお、各式のBand1~4は、AVNIR-2画像にお ける観測波長帯を示しており、Band1:青(0.42 $\sim 0.50 \ \mu$ m), Band2 : $\Re (0.52 \sim 0.60 \ \mu$ m), Band3:赤(0.61~0.69 µ m)、Band4:近赤外 (0.76~0.89μm)の反射強度を示す。

4.2.2 崩壊地抽出手順

抽出方法は、図-3 に示すように、「災害前の植 生域であった地域」の中において、「災害後の裸 地域」へ変化した地域が「災害時の崩壊地」であ るとして抽出した。

ここで、観測時の季節等の条件による影響を低 減するため、DN^{注1)}画素値を反射率^{注2)}に変換し た。また、異なる季節の画像を比較するため、 NDVI及びGSIの閾値は画像毎に設定した。

4.2.3 崩壊地の抽出

抽出の過程と結果を 図-5、図-6に示す。

□:抽出エリアの位置

(c)災害前の植生域(2007/10) (NDVI植生域-GSI裸地域)

(d)災害後の裸地域 (2008/7) (GSI裸地域-NDVI植生域) 図-5 指標の適用結果

注1) DN: Digital Number、校正済みデジタル値。 注2)反射率:ある面への入射光束に対する反射光束の比 率である。反射率は0から1までの値で表される。

* 2

図-6 崩壊地の抽出結果図((c)植生域→(d)裸地域へ変化)

4.2.4 抽出精度の評価

当該地区には、航空写真判読から作成された崩 壊地、地すべり等の箇所を示すGISデータ(岩手 県・宮城県作成)が存在するため、これを正解と して、抽出精度を評価した。この航空写真GIS図 面と、図・6の抽出結果とを重ね合わせて比較し、 表-2 の評価区分で表したものが、図-7 である。

500 1,000 2,000 メートル 0

図-7 「航空写真判読から作成した崩壊地GISデータ」 との重ね合わせ

(1) 面積による評価

図-7 を用いて、以下の評価基準で面積ベース の精度評価を行った。

・抽出率:表-2 のA/(A+B)

実際に発生した崩壊地(航空写真判読)の内、 衛星画像から抽出できた崩壊地の割合を抽出率 とすると、崩壊地の抽出率は66%となった。

・正答率:表-2 のA/(A+C)

衛星画像抽出で崩壊地と判定した箇所が実際 に崩壊地であるかどうかを示す割合を正答率と

すると、崩壊地の正答率は81%となった。 (2) 箇所数による評価

航空写真判読による崩壊地の地域の中に、衛星 画像からの抽出崩壊地が1画素以上含まれている 場合はその崩壊地を"抽出"と判定すると、全崩 壊箇所数における、衛星画像からの崩壊箇所の抽 出率は57%となった。そして、崩壊地の中でも、 1.000 m 以下の崩壊地の抽出率は50%以下である が、2,000 m 以上の崩壊地は、80%以上の箇所が 衛星画像から抽出できた。

4.2.5 データ処理時間

災害発生時にはより短時間でのデータ処理が求 められる。今回のAVNIR-2データによる崩壊地 の抽出(図-4)に必要な時間は、衛星データの入手 後、4時間程度となった。

4.3 合成開口レーダーによる抽出

4.3.1 崩壊地抽出に用いた指標

ALOSの合成開口レーダーのPALSARデータを 用いて、NDPI解析⁴⁾(Normalized Difference Polarization Index) により崩壊地を抽出した。

解析の指標はNDPI=(HH-HV)/(HH+HV) で、HH^{注3)}とHV^{注4)}の強度の比演算で算出される 値であり、地すべりや斜面崩壊によって植生が裸 地に変化する等、地表の被覆物が大きく変化した 場所で、差分値(絶対値)が大きな値を取る。

そこで、地すべり・斜面崩壊箇所との対応が確 認される。

PALSAR計測データのNDPI解析による崩壊地

4.3.2 使用した指標と崩壊地抽出フロー

抽出フローを図-8に示す。 PALSAR PALSAR 被災後画像② 被災前画像① オルソ処理 オルソ処珥 (倒れ込み補正) (倒れ込み補正) .___¥____ ___**Ť**___ 被災後強度画像② 被災前強度画像① ¥ ¥ スペックル低減 スペックル低減 Meanフィルタ(9×9) Meanフィルタ(9×9) 偏波比演算 偏波比演算 NDPI=(HH-HV)/(HH+HV) NDPI=(HH-HV)/(HH+HV) • 被災後NDPI画像① · 被災前NDPI画像① NDPIの差分値の計算 図-8 NDPI解析による崩壊地の抽出フロー

注3) HH:送受信が水平偏波(H) 注4) HV:送信が水平偏波(H)、受信が垂直偏波(V)

抽出エリア

抽出できず

過剰抽出 崩壊地以外

抽出

4.3.3 崩壊地の抽出結果

抽出解析を行った対象地域は、4.2と同様に、 平成20年岩手・宮城内陸地震で土砂災害が多発 した迫川上流の湯ノ倉温泉周辺の地震後の新規崩 壊地を抽出した。

この「NDPI解析による抽出結果」と、崩壊地 位置の正解とする「災害後の航空写真から判読し た崩壊地のGIS図面」を重ねた図を図-9 に示す。

図-9 NDPI解析(観測日:2007/9/21・2008/9/23) (入力データ: MEANフィルタ後のデータ)

図-9 において抽出結果は、白色で示されてい る。白色が強い箇所ほどNDPIの差分値が大きく、 地表面の変化が大きい崩壊地である確度が高いこ とを示している。また、航空写真判読から得られ た崩壊地位置を図-9 に赤細線で示す。図-9中で、 左下の迫川上流の湯ノ倉温泉周辺の集中した崩壊 地、右下の荒砥沢地すべりの大規模崩壊地は、定 性的ではあるが白く浮き出ており、大規模な崩壊 が集中して発生した箇所は概ね把握できている。

4.3.4 データ処理時間

今回のNDPI解析による崩壊地の抽出に必要な 時間は、衛星データの入手後、約11.5時間であっ た。精度を落として即時性を優先すると、同4時 間程度まで短縮可能である。

5. まとめ

本稿では、衛星リモートセンシング技術が、土 砂災害観測における長期的な流域監視に有効であ ることを事例に基づき示した。特に航空機観測の 難しい海外の大規模土砂災害の状況を把握する際 には、衛星リモートセンシングが有効である。

また、災害発生時の迅速な崩壊地等被災状況の 把握の目的においても、光学センサ・合成開口 レーダーによる計測データの解析といった衛星リ モートセンシング技術が応用できることを事例に 基づき示した。

今後、地域・気象等の条件が異なる場合にも適 用可能か等、災害発生時の衛星による被災状況把 握手法を確立するため、技術開発を進めていく必 要がある。

参考文献

- 清水孝一、小山内信智、山越隆雄、笹原克夫、筒井 健:衛星観測高精度DEMによるインドネシア国バ ワカラエン山の大規模崩壊後の土砂流出の経年変化 把握、日本地すべり学会誌、Vol.45、No.2、 pp.95~105、2008
- 2) 吉川和男ほか:地球観測衛星ALOS(だいち)によ る崩壊地の崩壊地の抽出方法について、平成22年 度砂防学会研究発表会概要集、pp.490~491
- 古田竜一: AVNIR-2単画像からの斜面災害箇所抽 出手法の検討、衛星リモートセンシング推進委員会 (平成20年度)
- 4) CAO Yun-ganga, YAN Li-juanb, ZHENG Ze-zhonga : EXTRACTION OF INFORMATION ON GEOLOGY HAZARD FROM MULTI-POLARIZATION SAR IMAGES, International Society for Photogrammetry and Remote Sensing, 2008, BEIJING

国土交通省国土技術政策 総合研究所危機管理技術 研究センター砂防研究室 主任研究官 Masaki MIZUNO

国土交通省国土技術政策 総合研究所危機管理技術 研究センター砂防研究室 研究官 Shin-ichiro HAYASHI

独立行政法人土木研究所 水災害・リスクマネジメ ント国際センター水災害 研究グループ防災チーム 総括主任研究員 Yoshikazu SHIMIZU

国土交通省国土技術政策 総合研究所危機管理技術 研究センター砂防研究室 長 農学博士 Dr.Nobutomo OSANAI