コンクリート道路橋における信頼性設計の 適用に関する基礎的検討

和田圭仙* 木村嘉富** 宮田弘和*** 高橋敏樹**** 松沢政和*****

1. はじめに

報文

平成14年の道路橋示方書(以下、「道示」とい う。)改定で、それまでの仕様規定から性能照査型 規定への転換を目指した示方書体系に改定されると ともに、性能規定化するにあたって橋に要求される 性能と橋を設計するうえで留意しなければならない 基本的事項が、設計の基本理念として明示された。 平成24年の道示改定においてもこの理念は堅持さ れており、現在、部分係数設計法の導入と、さらな る性能規定化に向けた検討が進められている。具体 的には、橋に対する要求性能と部分係数設計法によ る性能照査の体系化を図るとともに、部材等が適当 な確からしさを確保し性能を満足する状態であるこ とを照査するための照査式について、ある設計供用 期間において作用側・抵抗側それぞれの荷重や材料 強度等のばらつきを考慮した部分安全係数の試算と

表-1	検討対象の橋梁と支間	Ē

橋梁形式		単純	単純	連結	連	፤ 続
		中空床版 (a:RC,b: PRC,c:PC)	PC ポステン T 桁		PC 箱桁	PC ラーメン 箱桁
支間長	20m	a20, a20N ^{±6)} ,b20, c20,c20, c20N ^{±6)}	d20	e20 (±1)	-	-
	30m	-	-	e30 ^{注2)}	-	-
	40m	-	-	e40 注3)	f40 注3)	-
	80m	-	-	-	f80 ^{注4)} f80N ^{注4)注6)}	g80 ^{注4)} g80N ^{注4)注6)}
	120m	-	-	-	f120 ^{注5)}	g120注5)

注1) 支間割は3@20m、注2) 支間割は3@30m、注3) 支間割は 3@40m、注4) 支間割は40m+80m+40m、注5) 支間割は 80m+120m+80m、注6) "N"は、ねじりの検討(交角5°、 30°)を示す。

Fundamental study on application of reliability design method for concrete highway bridges **土木用語解説:信頼性設計法、信頼性指標 β 影響評価を行っている。

上記を背景として、本検討ではコンクリート道路橋の代表的な橋梁形式や支間長を対象に、まず、 照査項目ごとに抵抗側のばらつき要因を、材料強度や施工にかかわる不確実性の耐力分布として試算した。次に作用側で想定する外力から断面力を算定し、耐力分布との関係から信頼性設計法^{*1)}に基づき安全性を検証した。

2. 現行設計に対する安全余裕度の評価

図-1に検討の流れを示す。現行設計解が有する安 全余裕と橋梁形式や部位ごとの耐力を評価した上で、 一定の安全余裕を確保する条件のもと抵抗係数を算 定した。

2.1 試算条件

現橋の信頼性指標の検討では、道示Ⅲ²に従って 設計されたコンクリート橋(表-1、図-2)の主方向 を対象に、現行基準に従った設計(以下、「現行設 計」という。)が有している破壊に対する**信頼性指** 標β*の試算を行った。

照査項目は、①曲げモーメント又は軸方向力が 作用する部材の終局荷重作用時における破壊抵抗曲 げモーメント(以下、「曲げ耐力」という。)の照査、 ②せん断力が作用する部材の終局荷重作用時におけ る斜引張破壊(以下、「斜引張破壊耐力(せん断)」 という。)に対する照査、③せん断によるウェブコ ンクリートの圧壊(以下、「ウェブ圧壊耐力」とい う。)に対する照査、並びに④ねじりモーメントが 作用する部材の終局荷重作用時における斜引張破壊 (以下、「斜引張破壊耐力(ねじり)」という。)に対 する照査である。

図・2 検討対象橋梁の代表断面図の例 (PC連続箱桁橋, PC連続ラーメン箱桁橋(f120,g120))

項目	分類	略称	荷重組合せ	
	設計荷重時	死荷重時	1.0D	
		設計荷重時	1.0D+1.0L	
田行		温度時	1.0D+1.0L+1.0T	
现1]	終局荷重時	_	1.3D+2.5L	
		-	1.0D+2.5L	
		_	1.7D+1.7L	
	永続作用時	死荷重時	1.0D	
部分係数版			1.0D+1.0T	
	変動作用時	設計荷重時	1.0D+1.0L	
(試算用荷		温度時	1.0D+1.0T	
重組合せ)			1.0D+1.0L+0.8T	
		地震時	1.0D+0.85EQ	
			1.0D+0.5T+0.85EQ	

表-2 検討に用いた荷重および荷重組合せの一例

注)D:死荷重、L:活荷重、T:温度変化の影響、EQ:地震の影響

照査部位は、各橋種において断面力が卓越する 箇所(支間中央、支点部、1/4支間等)とした。検 討に用いた荷重は、表-2に示すように永続作用時お よび変動作用時それぞれ、現行道示の設計荷重作用 時の荷重規模と大きくかい離しない部分係数書式の 荷重係数と荷重組合せ(以下、「試算用荷重組合 せ」という。)である。

表・3に考慮した不確定要因と基本統計量を示す。 各変動要因の平均値および変動係数は、既往の調査 結果等に基づき設定した。なお、曲げ耐力や斜引張 破壊耐力などの各耐力に対する信頼性指標を把握す るために、設計荷重時の許容応力度の照査を行わず、 終局荷重時の断面力相当の耐力を有するよう部材厚 や鋼材配置等の細目を決定した。

2.2 信頼性指標の算出方法

信頼性指標 βの解析方法として各種の方法が提案 されているが、曲げ耐力と斜引張破壊耐力(ねじ り)は汎用性を考慮してFOSM法を用いた。なお、 斜引張破壊耐力(せん断)とウェブ圧壊耐力(せん 断)はモンテカルロシミュレーションを用いた。

本検討に用いた信頼性指標の概念図を図-3に示す。 ここで信頼性指標とは、現行設計が試算用荷重組合 せによる断面力($S_{itg_{用荷重}}$)に対して有するもので あり、図中の β_1 に相当する。しかしながらこの β_1 は、終局荷重作用時の荷重組合せと試算用荷重組合 せにより発生する断面力の相違や、構造細目等に よって生じる耐力の余裕に関する安全余裕も含まれ ており、信頼性指標が大きく破壊確率が小さい。そ こで、部分安全係数として考慮すべき安全余裕と、 上記各要因が信頼性に及ぼす影響の程度を把握する ため、上記の β_1 に加え、現行終局荷重による断面 力を荷重値とした β_2 、および構造細目等による余 裕量を加えた断面力を荷重値とした β_3 に細分化す

表・3 🗦	考慮	した材料	•	施工によ	る不祥	確定要因

項目	平均值	変動係数
コンクリート強度	設計基準強度の 1.2 倍	15%
ヤング係数	道示の通り	10%
乾燥収縮・クリープ	道示の通り	17%
有効高	設計値	10mm
PC 鋼材の引張強度	規格値の 1.03 倍	1%
鉄筋の降伏強度	規格値の 1.14 倍	4%

ここに、S_{試算用荷重}、S_{終局荷重}:試算用荷重組合せ、現行の終局 荷重作用時に算定される断面力のうち、それぞれ最大のもの R_{這示}: 道示 IIIに従って設計された場合の断面耐力 R_{実附力}:表-3に示す各変動要因を考慮した場合の耐力分布 $m(= R_{\ddot{a}\pi} - S_{終局榜重}):構造細目等による耐力の余裕量$

図-3 本検討における信頼性指標の概念図 ることとした。

なお、本検討においてコードキャリブレーショ ンの観点から信頼性指標はβ3を用いて試算した。 つまり、現行終局荷重と試算用荷重の荷重レベル差 に起因する両者の断面力比は修正係数Ψとして、算 出された抵抗係数を除することにより考慮した。

図-3より、信頼性指標 β 3は式(1)で表わされる。

$$\beta_{3} = \frac{\mu_{Z}}{\sigma_{Z}} = \frac{\mu_{R} - R_{\tilde{\Xi}\tilde{\pi}}}{\sqrt{\sigma_{R}^{2} + \sigma_{S}^{2}}} = \frac{\mu_{R} - S_{k \in \mathbb{N} \oplus \tilde{\pi} \oplus \mathbb{I}} - m}{\sqrt{\sigma_{R}^{2} + 0}} = \frac{R_{\tilde{\Xi}\tilde{\pi}} - \Psi \cdot S_{k \in \mathbb{I} \oplus \mathbb{I} \oplus \tilde{\pi} \oplus \mathbb{I}}}{\sqrt{\sigma_{R}^{2} + 0}}$$
(1)
(σ s=0: \tilde{m} ± (σ k c \tilde{m} t \tilde{m}

2.3 目標信頼性指標 β_Tと修正係数 Ψの算出

目標信頼性指標 β₁の設定にあたり、前述のとお り作用体系の見直しに伴う終局荷重組合せと試算用 荷重組合せによる断面力比の影響や、構造細目等に よる余剰耐力分を分類して評価するため、これらの 影響を除いた β₃を目標信頼性指標 β₁とした。なお、 断面力比の影響は修正係数Ψで考慮し、また構造細 目等による余剰耐力mは実設計で考慮されることか ら、設計断面力に対して耐力は β₁相当の安全余裕 を有することとなる。

図-4から図-7に、それぞれ曲げ耐力、斜引張破壊 耐力(せん断)、ウェブ圧壊耐力、斜引張破壊耐力 (ねじり)の各耐力に対する修正係数 Ψ 及び目標 信頼性指標 β_{T} を示す。なお、斜引張破壊耐力 (せん断)は、道示 IIIおよび道示 V^{2} の各評価式 について信頼性指標を算定した。

修正係数 Ψ は1.6~2.0程度であり、概ね荷重係 数比に応じた断面力比となった。なお、斜引張破 壊耐力(せん断)の β_{τ} の平均値は、道示Vの評 価式より求めた場合は4.23であり、道示IIIの2.15 より大きな安全余裕を有する。これは、評価式が 有する誤差の相違によるものと考えられる。また、 ウェブ圧壊耐力の値が0.61と他と比べて小さいが、 これは耐力の変動要因のうち、ばらつきの大きい コンクリート強度に起因する「平均せん断応力度

の最大値」が支配的であることによると思われる。

なお、実設計においては、修正係数Ψによる安 全余裕を考慮した抵抗係数とすること、一般に部 材厚は終局荷重レベルよりも設計荷重レベルで決 定することから、信頼性設計導入によりウェブ圧 壊に対する安全余裕が他と比べて著しく小さくな ることはないと考えられる。

3. 目標信頼性指標に対する抵抗係数の検討

3.1 目標信頼性指標に対する抵抗係数の算定方法

(1) 曲げ耐力、ウェブ圧壊耐力、斜引張破壊耐 力(ねじり)の抵抗係数

代表例として曲げ耐力に対する抵抗係数の算出 方法を示す。荷重抵抗係数設計法の設計基準式よ り、荷重項を確定値とすると次式が示される。

- $\phi \cdot R_n \ge S_n \tag{2}$ $\Box = \zeta_n \qquad (2)$
- *R_a*:設計示方書によって示される公称強度または耐力
- *S_n*:設計示方書によって示される各設計荷重
 から求まる公称荷重作用

♦:抵抗係数

 $\phi = (I - \beta_T \cdot V_R) \mu_R / R_n$

抵抗係数 ∉*は、

で表わされる。ここに、 β_{T} は目標信頼性指標、 $V_{R} = \sigma_{R} / \mu_{R}$ は変動係数、 μ_{R} は耐力平均値、 R_{R} は公称耐力である。

修正係数Ψ^Mを抵抗係数φに含めて表現し、修 正係数を考慮した抵抗係数φ_a=φ/Ψ^Mとすれば、

 $(\phi/\Psi^{M}) \cdot R_{n} = \phi_{a} \cdot R_{n} \ge S_{itg_{H max}}$ (4) と表され、 ϕ_{a} が設計に用いる抵抗係数となる。 (2) 斜引張破壞耐力(せん断)の抵抗係数

斜引張破壊に対するせん断耐力である道示Ⅲ式 *S_m*および道示 V 修正式 *P_s*は、コンクリートが負 担できるせん断力 *S_c*、斜引張鉄筋が負担できる せん断力 *S_c* および PC鋼材の引張力のせん断力作 用方向の分力 *S_p*の和で表される。各成分は、対 象としている材料や期待される負担するせん断力 の考え方やその分担割合も相違するため、一律の 抵抗係数を採用するとそれぞれの影響が明確にな らない。そこで、各成分に対応した抵抗係数を設 定することとした。基準式は、曲げ耐力と同様に 以下で表わされる。

 $\phi_c \cdot R_{uc} + \phi_s \cdot R_{us} + \phi_n \cdot R_{un} \ge S_u \tag{5}$

ここに、

- ∮: コンクリートが負担できるせん断力に対 する抵抗係数
- ∮: :斜引張鉄筋が負担できるせん断力に対す る抵抗係数
- ϕ_{p} : PC鋼材の引張力のせん断力作用方向の分 力に対する抵抗係数
- α_{Rc} α_{Rs} α_{Rp} :各成分の感度係数
- *R_{me}*:コンクリートが負担できるせん断力
- R_{ss}:斜引張鉄筋が負担できるせん断力
- ^R_": PC鋼材の引張力のせん断力作用方向の 分力
- 各抵抗係数は以下のように表わされる。

$$\phi_c = (1 - \beta_T \cdot \alpha_{Rc} \cdot V_{Rc}) \frac{\mu_{Rc}}{R_{nc}}$$
(6)

 $\phi_{s} = \left(I - \beta_{T} \cdot \alpha_{Rs} \cdot V_{Rs}\right) \frac{\mu_{Rs}}{R}$ (7)

$$\phi_{p} = \left(1 - \beta_{T} \cdot \alpha_{Rp} \cdot V_{Rp}\right) \frac{\mu_{Rp}}{R_{np}}$$
(8)

修正係数を抵抗係数に含めて表現し、修正係数 を考慮した抵抗係数をそれぞれ $\phi_{\alpha} = \phi_{\alpha}/\Psi^{s}$ 、 $\phi_{as} = \phi_s / \Psi^s$, $\phi_{an} = \phi_n / \Psi^s$ とすれば, $(\phi_c/\Psi^s) \cdot R_{nc} + (\phi_s/\Psi^s) \cdot R_{ns} + (\phi_n/\Psi^s) \cdot R_{nn}$ (9) $= \phi_{ac} \cdot R_{nc} + \phi_{as} \cdot R_{ns} + \phi_{ap} \cdot R_{np} \ge S_{\text{transf}}$

と表せ、これらが設計に用いる抵抗係数となる。

3.2 抵抗係数の算定結果

表-4に修正係数Ψを考慮した抵抗係数φを示す。 それぞれの抵抗係数は修正係数で除しているため、 概ね0.5~0.6程度と、諸外国のそれと比べると小 さい。なお、せん断(斜引張破壊)のⅢ編式の場 合のコンクリート分担分(S.)の抵抗係数は0.36 と、特に小さい。これは、評価式自体が有する誤

究員

木村嘉富**

大阪大学大学院工学 研究科NEXCO西日 本高速道路学共同研 究講座(前独立行政 法人土木研究所構造 物メンテナンス研究 センター橋梁構造研 究グループ研究員) Hirokazu MIYATA

宫田弘和***

高橋敏樹****

株式会社大林組生産 技術本部橋梁技術部 技術第二課(前独立 行政法人土木研究所 構造物メンテナンス 研究センター橋梁構 造研究グループ交流 研究員) Toshiki TAKAHASHI

松沢政和*****

独立行政法人土木研究 所構造物メンテナンス 研究センター橋梁構造 研究グループ 交流研 究員 Masakazu MATSUZAWA

項目			記号	抵抗 係数φ	備考
曲げ耐力			$\phi_{aR} = \phi / \Psi_R^M$	0.617	$\Psi_{R}^{M} = 1.56$
斜 引 張 破 壊 耐 力 (せん 断)	■編式	S_c	$\phi_{acIIIR} = \phi_{cIII} / \Psi_R^S$	0.361	$\Psi_{R}^{s} = 1.73$
		S_s	$\phi_{asIIIR} = \phi_{sIII} / \Psi_R^S$	0.646	
		$\mathbf{S}_{\mathbf{p}}$	$\phi_{apIIIR} = \phi_{pIII} / \Psi_R^S$	0.577	
	V 編式	S_c	$\phi_{acRV} = \phi_{cV} / \Psi_R^S$	0.565	
		S_s	$\phi_{asR V} = \phi_{sV} / \Psi_R^S$	0.608	$\Psi_{R}^{s} = 1.73$
		$\mathbf{S}_{\mathbf{p}}$	$\phi_{apRV} = \phi_{pV} / \Psi_R^S$	0.573	
ウェブ圧壊耐		\mathbf{S}_{uc}	$\phi_{acR} = \phi_c / \Psi_R^C$	0.607)H ^C 1 CA
力		$\mathbf{S}_{\mathbf{p}}$	$\phi_{apR} = \phi_c / \Psi_R^C$	0.610	$\Psi_R = 1.64$
斜引張破壊耐力(ねじり)		$\phi_{aT} = \phi / \Psi_R^T$	0.487	$\Psi_{R}^{T} = 2.04$	

差とともに、コンクリートが負担できるせん断応 力度が表-3に示すとおり材料ばらつきの大きいコ ンクリート強度に支配されるためである。

4. まとめ

本検討により得られた知見をまとめると、以下 のとおりである。

- 現行終局荷重と試算用荷重の荷重レベル差に起 因する断面力比とした修正係数Ψは1.6~2.0程 度で、概ね荷重係数比に応じる傾向となった。
- 目標信頼性指標 β₁を定め、現行設計と同等の 安全余裕を有する場合の抵抗係数を提案した。 その際、信頼性指標を細分化することにより、 材料等のばらつきや荷重組合せの影響、構造細 目による安全余裕を明確にした。

今後、引続き試設計等を通して抵抗係数の妥当 性を確認するとともに、他の橋梁形式や照査項目 を対象とした抵抗係数を検討予定である。

参考文献

- 1) 構造物の信頼性設計法、鹿島出版会、1986年5月
- 道路橋示方書・同解説Ⅲコンクリート橋編、Ⅴ耐 2)震設計編、日本道路協会、平成24年5月

和田圭仙*

独立行政法人土木研究 所構造物メンテナンス 研究センター橋梁構造 研究グループ 主任研 究員 Yoshinori WADA

