報文

光学衛星画像による大規模崩壊の土砂移動状況の経年把握

水野正樹・江川真史・清水孝一・筒井 健

1. はじめに

衛星リモートセンシング技術は、一定品質で広 域同時観測が可能であり、かつ長期的な継続観測 により、地表で生じている事象を時系列的に解析 することが可能である。さらに、近年では観測画 像の高解像度化が進み、地上分解能が1mより高 い画像の入手も容易となった。衛星リモートセン シング技術による大規模災害時の早期被災状況把 握や継続的な流域監視等、土砂災害分野でも十分 適用可能な条件が整ってきたといえる。

本報では、2004年3月26日にインドネシア国バ ワカラエン山カルデラ壁で発生した大崩壊(推定 崩壊土砂量:約2億m³)を対象として、複数時期 の高解像度光学衛星画像をもとにステレオ画像解 析により時系列的にDEMを作成し、崩壊前後及 びその後の土砂流出による地形変化を把握した事 例について報告する。

2. DEMの作成方法

2.1 光学衛星画像によるDEMの作成方法

本研究では、光学衛星画像を用いたステレオ画 像解析により、DEM (Digital Elevation Model: 数値標高モデル)を作成した³⁾。ステレオ画像解 析とは、2枚以上の異なる方向から撮影された衛 星画像の視線方向差(視差)を解析し、各画素の 3次元座標を計測する方法である。DEM作成の流 れは以下のとおりである(図-1)。

①ステレオペア衛星画像の選定・収集					
\downarrow					
②幾何学モデルの作成					
\downarrow					
③画像マッチング					
Ļ					
④3次元座標計測					
Ļ					
⑤DSMの作成					
↓					
⑥基準点補正					
Ļ					
⑦樹高補正(今回不要)					
図-1 本研究におけるDEM作成フロー					

①ステレオペア衛星画像を選定・収集する。

The yearly monitoring of sediment movement by optical satellite images after a large-scale collapse.

② 衛星位置・姿勢情報、センサモデルを利用して画像の各画素の視線方向を表した幾何学モデルを作成する。

- ③幾何学モデルに基づいて画像の各画素に対応 する、ステレオ対象画像の各画素位置を画像 マッチング処理により照合する。
- ④ 対応付けた2つの画素位置から視線方向の交点 を推定して、3次元座標計測を行う。
- ⑤ 画像全体の計測結果を一定のグリッド間隔に 再構成したDSM (Digital Surface Model:数 値地表高モデル)を作成する。なお、DSMは 樹木や地物の高さを含む地表面の標高を表す。
- ⑥ 基準点補正は、地上基準点を用いて、主に衛星の位置、姿勢データ等に起因するDSMの水平・垂直座標誤差を補正する。誤差が大きく、傾き補正等が必要な場合は、3点以上の地上基準点を基に補正する。しかし今回は、対象箇所が海外で正確な地上基準点を設定しておらず、そして今回使用の衛星の位置・姿勢センサが高精度であることから、画像上の1地点を基準点として定め、水平移動により各画像の相対的な位置を合わせる補正を行った。
- ⑦ 樹林地域で地盤標高を求める場合は樹高補正 を行うが、本研究では比較対象地域が崩壊地 の裸地であるため樹高補正は不要である(以 下、DSMをDEMとして使う)。

2.2 高解像度光学衛星画像によるDEMの精度

衛星画像のステレオ幾何学モデルに基づくと、 理論上の高さ精度は、①幾何学モデルの精度、 ②画像間位置あわせの精度、③解像度と視差角度 に基づく幾何学条件の精度、の3要素に依存する。

誤差のない理想的な幾何学モデルを仮定すると、 高さ精度は式(1)により表わされ、画像解像度と 視差角度に依存する。

 $H_{error} = R_{eso} \times P / (B / H)$ ・ ・ 式(1)

ここで、Herror:高さ誤差、Reso:画像解像度、 P:位置あわせ精度、B/H:基線長さ/高度である。 ただし、実際の複雑な自然地形においては、画 像に複雑な歪みが生じるために、画像マッチング 処理で「画像間位置合わせの精度」が低下する。 特に、斜面の傾斜角度により誤差が大きくなり、 30度程度以上の急傾斜地における高さ精度には 留意を要す。例えば、SPOT-5衛星を用いた場合、 式(1)で理想的な条件下では約2mの高さ精度が想 定されるが、実際は精度が低下する。

そこで本事例のインドネシア・バワカラエン山 の場合について、作成した5mメッシュのSPOT-5 衛星画像(2.5m分解能)から作成したDEMの精 度検証のために、地形変化がないエリアにおける 2時期のSPOT-5のDEMを用いて、相対高さ誤差、 及び相対水平誤差を検証した¹⁾。相対誤差は、 DEMをもとに作成した2時期のオルソ画像の差分 を用いて、位置座標のずれを検証したものである。 その結果、相対高さ誤差は約3mであり、相対水 平誤差もDEMの1メッシュ以内が十分確保されて いる。また同様に、QuickBird衛星画像(0.6m 分解能)およびIKONOS衛星画像(1m分解能) から作成した2mメッシュのDEMは、2m間隔の 等高線を作図して評価し、その結果、概ね2mの 高さ精度は確保されていると判断した。

3. 土砂移動量解析

3.1 インドネシア・バワカラエン山大崩壊の概要

2004年3月26日、インドネシア国スラウェシ島 のバワカラエン山のカルデラ壁において、インド ネシア最大級の大規模な崩壊が発生した(写真-1)。崩壊土量は約2億m³以上と推定され、崩壊土

砂は約7km下流ま で到達した。一方、 大量に供給された 不安定な崩積土は、 その後の急速な侵 食作用を受けてお り、下流域の多目 的ダムや集落に 写 とって脅威となっている。

写真-1 バワカラエン山の大崩壊

3.2 光学衛星画像を用いた時系列DEMの作成

特に侵食作用が顕著なカルデラ部付近を対象エ リア(図-2)として、崩壊前(2003年)、崩壊直 後(2004年)及び崩壊から6年半経過後(2010 年)の3時期の高解像度光学衛星画像を収集し、 DEMを作成した(表-1及び図-4(A),(B),(D)参照)。

-2 DEM作成エリア(黒枠) 素-1 時系列DFM作成仕様

デー	ータ名	時期	衛星種類	DEM 分解能	画像撮影日	地上 分解能	
DE	M ₂₀₀₃	崩壊前	IKONOS 💥	2m	2003年6月2日、6月13日	1.0m	
DE	M ₂₀₀₄	崩壊直後	SPOT-5	5m	2004年10月13日、11月2日	2.5m	
DEM	М	崩壊	WorldView-1,2	2m	2010年9月2日、10月13日	0.5m/	
	2010	6年半後	QuickBird	2111	2010年10月16日	0.6m	

※雲補間用に一部ASTER-DEMを使用(2001年7月7日撮影)

3.3 崩壊前後の地形変化量の推定

崩壊前後の地形変化量を把握するために、作成 したDEM2003とDEM2004を用いて差分解析を行っ た(表・2,図・4(F))。崩壊による侵食量は2.1億m³、 崩壊深は最大483mであり、堆積量は1.4億m³、堆 積深は最大145mと推定された。崩壊土砂は崩壊 前の谷部を埋めるように堆積し、差分の0.7億m³ は解析エリアより下流へ流下したと考えられる。

表・2 崩壊前後の地形変化※:分布図_{崩壊前後}(DEM₂₀₀₄-DEM₂₀₀₃)

侵食(-)			堆積(+)			差分	
	侵食量	最大深	平均深	堆積量	最大深	平均深	1
	(m ³)	(m)	(m)	(m^{3})	(m)	(m)	(m ³)
	-2.1億	-483	-66	1.4億	145	40	-7,000万
		※ 参 考 つ	ケ献3) (9	SPOT-57	10万m ³ 利	足底の糖問	きを確保)とり

体積の有効数字程度の精度は確保されていると考えられる

3.4 崩壊直後の想定地山DEMの作成

大規模な崩壊発生以降、崩壊地付近ではガリー 侵食や拡大崩壊、堆積域では崩積土の再移動等、 経年的な土砂移動状況を把握した。ここで、崩壊 後の土砂移動の経年変化を把握するために、崩積 土を取り除いた崩壊直後の地山の表面標高を基準 に地形変化量をモニタリングした。ただし、崩壊 時に崩壊してすぐ崩積土に埋もれたエリアでは、 現地ボーリング調査結果等が無い限り、正確に崩 壊後地山の表面を推定することは困難である。 よって、崩壊前後のDEM2003とDEM2004を比較し、 各メッシュでより低い標高値を便宜上の崩壊直後 想定地山と定義しDEMを作成した(以下、「想定 地山」という。図-3及び図-4(C))。

-39-

土木技術資料 55-12(2013)

図-4 光学衛星画像による時系列DEM及び経年変化

※背景図はDEM2010の傾斜量図

3.5 崩壊後カルデラ部の経年変化

作成したDEMをもとに崩壊後の2004年~2010 年のカルデラ部の経年変化を推定した(表-3)。

~	网长中南	差分解	析(A-B)	侵食量	割合	
テーダ名	<u> </u>	А	В	(m ³)		
分布図 _{差分①}	崩壊後の	DEM ₂₀₁₀	DEM ₂₀₀₄	-4.200万	_	
図-4(G)	侵食量	(2mメッシュ)	(5mメッシュ)	4,200 /J	-	
分布図 _{差分②}	想定地山か	DEM ₂₀₁₀	DEM _{想定地山}	-1 500万	36%	
図-4(H)	らの侵食量	(2mメッシュ)	(2mメッシュ)	1,000/0	30%	
分布図 _{差分③}	崩積土砂域	DEM _{差分①}	DEM _{差分②}	-2 700万	64%	
図 -4(I)	の侵食量	(2mメッシュ)	(2mメッシュ)	2,10075		
※DEManaは2mメッシュに補間						

表・3 崩壊後の想定地山及び崩積土砂域の経年変化

(1) 崩壊後の侵食量 (分布図_{差分①}=DEM₂₀₁₀-DEM₂₀₀₄)

2004年~2010年の侵食量は4,200万m³程度で、 河道沿いの渓岸部に侵食が見られる(図-4(G))。 年が経つにつれて毎年の侵食量は減少するととも に顕著な侵食位置は変化している^{1),2)}。

(2) 想定地山からの侵食量 (分布図_{差分②}=DEM₂₀₁₀-DEM_{想求地山})

想定地山からの侵食量は、1,500万m³程度であ り、2004年~2010年の侵食量4,200m³の約36% に相当する。主に崩壊斜面における拡大崩壊及び ガリー侵食である(図-4(H))。

(3) 崩積土砂域の侵食量 (分布図差分③=分布図差分①・分布図差分②)

2004年~2010年の侵食量と想定地山からの侵 食量の差を崩積土砂域の侵食量とし、2,700万m³ 程度であった。これは2004年~2010年の侵食量 4,200m³の約64%に相当し、また、崩壊時の崩積 土1.4億m³に対して約20%が解析エリアより下流 へ流出したことになる。また、本地域では、概ね 崩壊前の河道と類似した流れに沿った侵食作用が 認められる(図-4(I))。

以上より、本地域における大規模崩壊後の経年 変化の特性は、主に次のとおりであった。

・大規模崩壊斜面は、ガリー侵食や拡大崩壊等により、継続的な土砂発生源となっている。

 ・不安定に堆積した崩積土は、概ね崩壊前の河道 と類似した流れに沿った差別的な侵食により、
 継続的に土砂流出する。

4. まとめ

本稿では、航空機観測の困難な海外での大規模 崩壊を対象に、光学衛星画像をもとに高解像度か つ時系列的なDEMを作成し比較した。その結果、 大規模崩壊後斜面の継続的な侵食や、堆積崩積土 の崩壊前河道に沿った侵食等の土砂移動の経年変 化を詳細に把握することができた。

本解析結果は、衛星画像撮影と解析に時間を要 することに課題は残るものの、長期的な流域監視 におけるリモートセンシング技術の実運用に資す る有益な結果が得られたと考えられる。

今後、衛星による流域監視手法を確立するため の技術開発を進めるとともに、実用的な手法とし て、国内外を問わず普及を図っていきたい。

参考文献

- 清水孝一、小山内信智、山越隆雄、笹原克夫、筒 井健:衛星観測高精度DEMによるインドネシア国 バワカラエン山の大規模崩壊後の土砂流出の経年 変化把握、日本地すべり学会誌、Vol.45、No.2、 pp.95~105、2008
- 水野正樹、林真一郎、清水孝一、小山内信智:衛 星リモートセンシング技術の土砂災害への応用、 土木技術資料、第53巻、第1号、pp.16~19、 2011
- 3) Ken TSUTSUI, Shuichi ROKUGAWA, Hideaki NAKAGAWA, Sanae MIYAZAKI, Chin-Tung CHENG,Takashi Shiraishi, Shiun-Der YANG : Detection and volume estimation of large-scale landslides based on elevation change analysis using DEMs extracted from high-resolution satellite stereo imagery, IEEE Transactions on Geoscience and Remote sensing, Vol.45, No.6, pp.1681-1696, 2007.

国土交通省国土技術政策 総合研究所危機管理技術 研究センター砂防研究室 主任研究官 Masaki MIZUNO

国土交通省国土技術政策 総合研究所危機管理技術 研究センター砂防研究室 部外研究員 Masafumi EKAWA

清水孝一

 (独) 土木研究所水災害・ リスクマネジメント国際 センター水災害研究グル ープ(防災) 総括主任 研究員
 Yoshikazu SHIMIZU

筒井 健

(株)NTTデータ公共 システム事業本部 e-コミュニティ事業部 Ken TSUTSUI