現地レポート:道路インフラの「本格的なメンテナンス時代」を支える技術

高精度な道路防災点検手法による斜面安定度の総合的評価 (岐阜県御嵩町 国道21号)

伊藤仁志

1. はじめに

近年、伊豆大島の災害など、表層崩壊による災 害が多く発生している。表層崩壊の安定性評価法 は未確立であり、一般に地形や表土について高精 度の調査が必要とされる

岐阜県御嵩町の国道21号では、平成22年7月 の豪雨時に斜面崩壊が発生し、更に翌23年9月に も豪雨による同様な災害が発生した(写真-1)。

写真-1 斜面崩壊の発生状況(平成23年9月)

災害メカニズムの解明・復旧工法の検討等を行 うため、同月には災害調査検討委員会(委員長: 八嶋 厚 岐阜大学理事・副学長)が設置された。

本国道の斜面崩壊は、いずれも平成8年の「道 路防災総点検」、及び平成18年の「災害危険箇所 の再確認」において点検対象外とされていた、0 次谷での表層崩壊であった。

委員会では、当時の防災点検のスクリーニング の手法の見直しの必要性が指摘された。精度の高 いスクリーニングの新たな手法としてレーザープ ロファイラー(LP)地形図判読及び詳細な地表 踏査が、さらに詳細調査として土層強度検査棒 (土検棒)による貫入試験・ベーンコーンせん断 試験、高密度弾性波探査、自記水位計観測が提案 された。これらの手法を使用した調査は、平成 24年度に災害箇所を含む暫定雨量規制区間(延 長4.5km)において実施され、過年度の防災カル テ点検の再評価が行われた。

このうち本報では、表層崩壊の安定性評価に地 表踏査及び土検棒貫入試験を用いた事例を紹介す る。さらに、防災カルテ点検における要対策箇所 の絞り込みの過程について簡単に記す。

2. 各種調査方法の概要

(1) LP地形図判読

精度の高いLP地形図を用いて、災害発生の要因となる0次谷^{**}、遷急線、地すべり地形等の地 形判読を行った。判読には「LP地形図、縮尺 1:5,000、2mDEM」(平成15年作成、岐阜県)を 使用した。

(2) 地表踏查

LP地形図で判読できない微地形(0次谷,遷急線,崩壊跡地,集水地形,湧水跡,ガリー,表層 クリープ等)、浮石・転石、崩積土の堆積状況、 ならびに対策工の状況等について、地表踏査によ る詳細なマッピングを行った。

また、浮石・転石や土砂崩壊の危険度、対策工 の効果等について現地で安定度調査を実施し、合 計89の対象箇所について、要対策19箇所、カル テ対応37箇所、対策不要33箇所と評価した(表-2参照)。

(3) 土検棒貫入試験

0次谷等の比較的土層が厚いと推定される斜面 に測線を設定し、土検棒を用いた貫入試験により 土層深を測定した。その詳細は後述する。

(4) ベーンコーンせん断試験

上記貫入試験の実施測線の中で、土層厚が最も 厚い箇所において、土検棒を使用して粘着力及び 内部摩擦角を測定した(ベーンコーンせん断試 験)。これによって、異なる地質起源の崩積土に おける相対的な土層強度を把握できた。試験方法 や粘着力及び内部摩擦角の算出方法については、 マニュアル¹⁾を参照されたい。

Evaluation of slope stability based on highly precise maintenance method of road disaster prevention along the Route 21 in Mitake Town, Gifu Prefecture

^{*0}次谷は本来1次谷の延長上にある谷頭部を指すが、本報で は縮尺1:5,000地形図で判読した延長の短い谷型斜面を便宜 的に0次谷と呼ぶ。

(5) 高密度弹性波探查

平成23年の崩壊箇所において、土検棒貫入試 験の実施測線上で弾性波探査を実施し、地下構造 の解析を行った。この結果、弾性波速度0.4km/s より低い速度層を示す表層部が土検棒の貫入深度 とおおよそ一致した。

(6) 自記水位計観測

平成23年の崩壊箇所周辺や湧水が認められる 斜面で土検棒貫入試験の実施測線上に自記水位計 を設置した。今後、年間を通して土層内における 地下水位の変動状況をモニタリングする。

3. 地表踏查

3.1 地質概要

調査地域の基盤岩は白亜紀の土岐花崗岩²⁾及び 中新世の瑞浪層群²⁾(礫岩・砂岩)からなり、局 所的に美濃帯のジュラ紀付加体(泥質・砂質ホル ンフェルス)が分布する(図-1 参照)。前2者は 高角度傾斜の断層で接する場合と、花崗岩の上位 に瑞浪層群が中角度の構造で不整合に覆う場合と がある。これらをほぼ水平な構造で不整合に覆っ て、鮮新世の瀬戸層群土岐砂礫層³⁾が地形的高所 に分布する。

図-1 調査地域の地質平面図と平成22及び23年の崩壊 箇所の位置⁴⁾

3.2 崩壊地及び崩壊跡地の地形・地質特性

遷急線、0次谷、崩壊地及び崩壊跡地の特徴に ついて以下に記述する(図-2 参照)。

(1) 遷急線

遷急線は尾根部、斜面中腹部、及び斜面下部の

図・2 平成22及び23年の崩壊箇所周辺のルートマップ4⁾ 3つの地形的位置に分布する特徴がある。尾根部 の遷急線は側方への連続性に比較的富み、中腹部 及び下部の遷急線は連続性に乏しい傾向にある。 (2) 0次谷

国道に面する斜面に発達する0次谷のほとんど が、尾根部及び中腹部の遷急線から下方へのびて いる。いずれの0次谷も崩壊地及び崩壊跡地を伴 い、土砂生産の場になっている。

(3) 崩壊地及び崩壊跡地

尾根部の遷急線から下方へのびる0次谷には、 複数の崩壊跡地が断続的に分布する。そのうち、 谷頭部の崩壊跡地は外形が不明瞭なものが多く、 この周辺部が小規模な集水地形を呈する。これに 対して、斜面中腹部の遷急線付近から下方の崩壊 跡地の外形は明瞭に残っているものが多い。平成 22年及び23年の崩壊地は後者のタイプに酷似し ている。また、崩壊跡地から下方には崩積土が厚 く堆積している場合が多く、過去にも土砂流出が 発生したものがあると考えられる。

以上から、土砂流出を伴った崩壊箇所の地形・ 地質特性は、①崩壊の頭部が位置する中腹部の遷 急線付近が最も活発な浸食前線となっており、② 上方には降雨の影響を受けやすい小規模な集水地 形を伴って、③下方の谷筋沿いには過去の崩壊を 示唆する厚い土層が存在すること、が明らかと なった。このような地形を呈する箇所は、土砂流 出が発生する危険性が高いと判断し、安定度調査 において「要対策」と評価する根拠の1つとした。

3.3 土検棒貫入試験の実施測線の選定

国道に面するすべての0次谷の中で、比較的厚 い崩積土が堆積する0次谷を絞り込み、谷筋に側 線を設定した。また、平成22年及び23年の崩壊 地直上斜面や、国道に面した小規模な地すべり跡 地も対象とした。このようにして設定した測線は 合計23測線である。

4. 土検棒貫入試験の概要

4.1 試験の方法・結果

貫入試験は、先端コーンつきの細いロッドを人 力により地面へ押し込み、土層深を測定するもの である(図・3参照)。これは、簡易動的コーン貫 入試験よりも簡便かつ迅速に実施することができ る。

本試験では、斜面上の測線において、水平距離 2m間隔の測点で高さを計測しながら、土検棒に より土層深を測定した。試験の手順はマニュアル ¹⁾に従った。

貫入試験の結果は測線ごとに横軸に水平距離を、 縦軸に高さをとり、地盤高と下面高(土層深)に よる断面を作成した。試験結果の例を図-4に示す。 この例では、湧水を伴った崩壊跡地の上方に土層 深0.84~1.56mの比較的厚い土層が分布する(図 中の赤色点線枠内)。このような不安定な場にあ る土層において崩壊が発生し、土砂が流出する可 能性があると推定される。

図-3 a:試験機器の全体構成、b:貫入試験で使用 する土検棒、c:貫入試験の実施状況

図-4 測線S-56の位置及び土検棒の貫入試験結果

4.2 「斜面の傾斜角―土層深」の関係図

崩壊発生の可能性のある斜面の傾斜角と土層 深の関係を求めるために、「斜面の傾斜角一土層 深」の関係図を整理した(図-5参照)。使用デー タはそれぞれ以下のように整理を行い、関係図に プロットした。また、崩積土の起源となる地質別 に凡例を変えて表した。

(1) 崩壊地以外の斜面のデータ

1つの測線内でも土層深や斜面傾斜は所々で大 きく変化しているため、それらの変換点を境にい くつかの斜面に分割した(図-4参照)。土層深で 斜面を区分する場合には、頻度分布に違いのある 1mを目安として、土層深1m以上が堆積する部分 と1m未満が堆積する部分とに分けた。

(2) 崩壊地及び崩壊跡地のデータ

平成22年及び23年の崩壊箇所の土層深は、崩 壊した土砂量を崩壊面積で除して得られた平均の 土層の厚さとした。斜面の傾斜角は、崩壊前の斜 面を復元して求めた。過去の崩壊跡地のデータは、 崩壊跡地直上の土層深が、過去の崩壊の厚さに近 似すると考え、これを崩壊跡地のデータとした。

図-5の関係図では、測線のデータは広く分散す るが、崩壊地及び崩壊跡地のデータは、傾斜角が 大きく、土層深が厚い図の右上の領域に分布する 特徴がある。また前者は、傾斜角が小さい場合に は土層深は幅広い値を示すが、傾斜角が大きくな るにしたがって土層深は小さくなる傾向を示して おり、急な斜面ほど厚い土層が存在しにくい傾向 をあらわしている。

4.3 限界線の設定と危険箇所の抽出

崩壊箇所の土層深や斜面傾斜角は不安定な条件

を示すと考えられるため、関係図の右上の、崩壊 箇所のデータの分布領域が危険箇所になりうる斜 面であると評価した。崩壊箇所のデータ数が少な く、分布領域の輪郭を正確に描くのは困難である が、便宜的な直線として限界線を以下のように設 定し、安定度が低いと考えられる領域を設定した。

限界線A: 土層深80cm前後の2つのデータの左 端を結んだ鉛直方向の直線である。この線は崩壊 箇所データの分布領域の中で、土層深の最も浅い 側の限界の線である。

限界線B: 傾斜角20~25°の2つのデータの直 下を結んだ水平方向の直線である。この線は崩壊 箇所データの分布領域の中で、斜面の傾斜角が最 も小さい側の限界の線である。

2本の限界線の右上領域では土層深が大きく、 かつ傾斜角が大きい。この領域にある斜面の土層 の安定度は相対的に低いと評価し、崩壊が発生す る可能性が高い斜面として危険箇所の抽出の根拠 とした。この領域内にあるデータを含む測線は 11測線に及び、これらを土砂流出の危険箇所と して抽出した(表-1参照)。

表-1 土検棒の貫入試験を実施した測線の地質別の数量 と危険箇所数⁴⁾

崩積土の地質 測線の位置 起源	土岐砂礫層	土岐砂礫層 +花崗岩	花崗岩	瑞浪層群	合計
切土のり面上方の0次谷	4(1)	2(2)	9(5)	1(0)	16(8)
切土のり面がない0次谷		1(1)			1(1)
H22年の崩壊箇所の直上斜面				1(0)	1(0)
H23年の崩壊箇所の直上斜面			3(1)		3(1)
切土のり面上方の地すべり跡地	1(0)	1(1)			2(1)
合計	5(1)	4(4)	12(6)	2(0)	23(11)

※()内の数量は危険箇所を示す(本文参照)。

一方、限界線の左側及び下側の領域にある斜面 の土層の安定度は相対的に高く、崩壊が発生する 可能性は低いと評価した。

防災カルテ作成の段階において、安定度が低い 領域内にある測線を含む斜面を「要対策」と、安 定度が高い領域内にあるそれを「カルテ対応」と、 それぞれ評価する根拠とした。

5. 要対策箇所の絞り込み

過年度の防災カルテ点検は平成8年度の安定度 調査に基づいて実施されており、平成23年度に は要対策1箇所、カルテ対応23箇所、対策不要8 箇所に評価された(表-2参照)。平成24年度の地 表踏査の段階における安定度調査によって、前年 度の評価は大幅に見直され、要対策及びカルテ対 応の箇所が増大した。さらに、上述した土検棒貫 入試験結果、対策工の効果、災害箇所における対 策工事の実施状況を考慮し、防災カルテ作成の段 階において要対策箇所の絞り込みを行った。その 結果、最終的に要対策16箇所、カルテ対応40箇 所、対策不要33箇所と評価した。

表-2 平成23年度及び24年度の評価一覧

	平成23年度	平成24年度の評価		
防災カルテ	の評価 (箇所)	安定度調査 結果(箇所)	防災カルテの 作成段階(箇所)	
要対策	1	19	16	
カルテ対応	23	37	40	
対策不要	8	33	33	

6. おわりに

道路防災において、本報で示した精度の高いス クリーニングや詳細調査によって、斜面安定度を 総合的に評価することが必要である。特に、土検 棒の貫入試験結果から新たに示した基準は、本地 域での斜面の安定度評価に用いる方法の1つとし て有効であった。他地域においても、斜面の地 形・地質特性を把握したうえで、この方法は適用 可能であると考えられる。

参考文献

- 1) 独立行政法人土木研究所:土層強度検査棒による 斜面の土層調査マニュアル(案)、土木研究所資 料、第4176号、40p、2010
- 2) 石原舜三、鈴木淑夫:東濃ウラン鉱床の基盤花崗 岩類、地質調査所報告、第232号、pp113~127、 1969
- 赤嶺秀雄:瀬戸市を中心とする陶土地帯の地質、 特に陶土および亜炭を含む地層の堆積状態につい て、自然科学研究彙報、第34巻、pp25~39、 1954
- 4) Tsujioka, H., Takami, M., Ito, H., Sasaki, Y., Hosoda, H., Nomizo, M., Ueno, S. and Ando, S.: Evaluation for slope stability of small valleys based on the Soil Strength Probe -an example in southern Gifu Prefecture, central Japan-, the IAEG 2014 Congress Proceedings (投稿中)

