一般報文

現場条件を考慮した災害復旧に関する動的遠心力載荷模型実験 ~大型土のうと補強材を用いた本復旧盛土の適用性~

1. はじめに

近年、豪雨や地震により道路盛土等が大きく崩 壊するなど道路土工構造物の災害が大規模化し、 交通機能が遮断され、復旧までに時間を要するこ とで物流に支障を来すことや集落の孤立等の社会 的影響が拡大する場合がある(写真-1)。道路管 理者には、被災によって遮断された交通機能を早 期に回復することが求められ、被災現場の状況に 応じた復旧対策の立案や迅速に回復できる工法の 選定が必要とされる。

既往の調査¹⁾から、迂回路や片側交互通行等の 対応が困難で復旧までに時間を要した被災現場で は、道路盛土の崩壊等の災害現場における応急復 旧方法として、施工性や資材調達の迅速性の観点 から大型土のうを用いた応急復旧が用いられてい ることが確認されている(図-1)。

a)牧之原SA付近²⁾
 b)能登有料道路³⁾
 写真-1 道路盛土の被災現場(例)

図-1 応急復旧工の分類

Dynamic Centrifuge Models Tests for Disaster Prevention Considering Actual Construction Conditions **土木用語解説:遠心力載荷模型実験

森 芳徳・久保哲也・宮武裕昭

筆者らは、大型土のうを用いた応急復旧に着 目し、本設構造物(本復旧)への適用性について 研究を進めている。一方で、大型土のうを道路盛 土本体に残置すると、将来的に水みちや盛土材が 吸い出される原因となること等が懸念されてい る。

本報告では、実際に現場で災害復旧を経験さ れた道路管理者及び復旧作業者を対象にヒアリン グを実施し、その結果を踏まえ、実現場の施工条 件等を考慮した動的遠心力載荷模型実験*を実施 した結果を報告する。

2. 復旧形状の検討

本検討では、既往の調査結果を参考に、大規模 災害の被災現場で想定される代表的な事例として 図-2(a)の崩壊形状を抽出し、応急復旧及び本復 旧の形状を検討した。

応急復旧の断面形状を図-2(b)に示す。応急復 旧は早期復旧を基本とするため、崩壊土砂の撤去 や切土等の土工量をなるべく低減させること、崩 壊土砂を一時的に仮置きするためのヤードを設け るなどの理由から壁面勾配は急勾配(1:0.5)と した。また、復旧する土工構造物は高盛土となる ため、盛土の安定性を確保するために、補強材 (ジオテキスタイル)を敷設することとした。

本復旧の断面形状を図-2(c)及び(d)に示す。地 山が近接し施工スペースの確保が困難な現場に対 しては、前面に急勾配で腹付盛土を設置する構造 (図-2(c):補強土タイプ)、比較的に用地や施工 条件等の制約がない現場に対しては、前面を安定 勾配で盛土する構造(図-2(d):安定勾配タイプ) の2種類を考案した。

図-2 考案した復旧形状

3. 災害復旧関係者へのヒアリング

復旧形状の安定性を検証するための動的遠心 力載荷模型実験を実施するにあたり、実際に現場 で災害復旧を経験された直轄国道の道路管理者及 び復旧作業者(施工業者)を対象に、図-2の復旧 形状等についてヒアリングを実施した。ヒアリン グの項目は、①施工上や構造上の問題が生じると 思われる事項、②現場で活用するために必要と思 われる改良点、③実験において計測等により確認 しなければいけないと思われる事項、その他、被 災現場における土工工事(復旧工事)の実情等に 関して、道路管理者及び復旧業者ともに同様な内 容とした。

ヒアリングの主な意見を表-1に示す。道路管理 者・復旧作業者ともに、①大型土のう間に隙間が

表-1 ヒアリング結果

道路管理者(発注者(地方整備局・河川国道事務所))
① 大型土のう間に隙間が生じ、 水みちや盛土材の流出 が懸念。
② 大型土のう設置箇所の締固め不足による沈下が懸念。
③ 大型土のうを残置することで 本設構造物としての品質確保 が懸念。
④ 大型土のうの設置位置は、 交通荷重の影響を直接受けない範囲 にすべき。
⑤ 盛土高さが高い場合、 下層部を3列配置 にした方が施工性や安定性が向上。
⑥ のり面勾配を1:0.5にした場合、施工時の安全対策が必要。
⑦ 大型土のうの品質管理が必要。施工及び品質はオペレータの技量に左右される。
⑧ 本復旧であれば、大型土のうの長期的耐久性の検証が必要。
⑨ 大型土のうを擁壁(補強土)として考える場合、設計法および維持管理の手法が必要。
⑩ 上記の懸念事項等が解決できれば有効な復旧方法。
復旧作業者(施工業者)
① 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の締固め不足等による沈下が懸念。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の縮固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。
 ① 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 ② 大型土のう設置箇所の締固め不足等による沈下が懸念。 ③ 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 ④ <u>腹付盛土</u>ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の締固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 4 腹付盛土ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。 5 崩壊した土砂を崩壊面から完全に除去することが、その後の作業性や安全性に大きく影響。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の縮固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 4 <u>腹付盛土</u>ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。 5 崩壊した土砂を崩壊面から完全に除去することが、その後の作業性や安全性に大きく影響。 6 大型土のう間の隙間対策として、現場では流動化処理土を充填。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の縮固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 4 腹付盛土ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。 5 崩壊した土砂を崩壊面から完全に除去することが、その後の作業性や安全性に大きく影響。 6 大型土のう間の隙間対策として、現場では流動化処理土を充填。 7 鋼製壁面材の使用は施工性や復旧の迅速性を勘案すると現実的でない。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の締固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 4 腹付盛土ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。 5 崩壊した土砂を崩壊面から完全に除去することが、その後の作業性や安全性に大きく影響。 6 大型土のう間の隙間対策として、現場では流動化処理土を充填。 7 鋼製壁面材の使用は施工性や復旧の迅速性を勘案すると現実的でない。 8 復旧するのり面表面は、植生シートを用いて保護すると効果的。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の縮固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 4 腹付盛土ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。 5 崩壊した土砂を崩壊面から完全に除去することが、その後の作業性や安全性に大きく影響。 6 大型土のう間の隙間対策として、現場では流動化処理土を充填。 7 鋼製壁面材の使用は施工性や復旧の迅速性を勘案すると現実的でない。 8 復旧するのり面表面は、植生シートを用いて保護すると効果的。 9 実現場では大量の大型土のうや矢板等を確保する必要があり、材料調達・手配が困難。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の縮固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 4 <u>腹付盛土</u>ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。 5 崩壊した土砂を崩壊面から完全に除去することが、その後の作業性や安全性に大きく影響。 6 大型土のう間の隙間対策として、現場では流動化処理土を充填。 7 鋼製壁面材の使用は施工性や復旧の迅速性を勘案すると現実的でない。 8 復旧するのり面表面は、植生シートを用いて保護すると効果的。 9 実現場では大量の大型土のうや矢板等を確保する必要があり、材料調達・手配が困難。 10 補強材を敷設する作業はあまり手間だとは思わない。
 1 大型土のうの間に隙間が生じ、水みちや盛土材の流出が懸念。 2 大型土のう設置箇所の縮固め不足等による沈下が懸念。 3 大型土のう自体に排水機能を付加することは、しっかり施工できていれば問題ない。 4 腹付盛土ののり面勾配は、施工性等も勘案すると1:0.8 程度が限界。 5 崩壊した土砂を崩壊面から完全に除去することが、その後の作業性や安全性に大きく影響。 6 大型土のう間の隙間対策として、現場では流動化処理土を充填。 7 鋼製壁面材の使用は施工性や復旧の迅速性を勘案すると現実的でない。 8 復旧するのり面表面は、植生シートを用いて保護すると効果的。 9 実現場では大量の大型土のうや矢板等を確保する必要があり、材料調達・手配が困難。 1 現地発生土を利用する際は、土質により安定処理が必要な場合もある。

生じ、水みちや盛土材流出、②大型土のう設置箇 所の締固め不足による沈下、等を懸念する意見が あった。また、道路管理者からは、①大型土のう 残置による盛土の品質確保が懸念、②大型土のう 設置位置は交通荷重の影響範囲外とすべき、との 意見があり、復旧作業者からは、①腹付盛土(補 強材無し)ののり面勾配は1:0.8程度が限界、② 大型土のう自体の排水機能の付加はしっかり施工 出来ていれば問題ない、等の意見があった。これ らの意見を踏まえ、実験ケースを設定した。

4. 動的遠心力載荷模型実験

4.1 実験概要

実験は最大遠心加速度が100Gまで対応可能な ビーム型の動的遠心力載荷実験装置を用いた(写 真・2)。模型は遠心力の相似則から、実スケール の1/50とした。模型地盤は、写真・3に示す長さ 1m×高さ0.5m×幅0.2mの土槽内に、高さ240mm (実スケールで12m相当)となるように大型土の う(12段積み)、盛土及び補強材を敷設し、更に その上に高さ100mm(実スケールで5m相当)の 嵩上げ盛土を構築した(写真・4)。

写真-2 実験装置

写真·3 土槽

写真・4 模型地盤(補強土タイプ)

実験ケースは、本設構造物(本復旧)として の安定性に着目し、大型土のうを残置させた状態 において、地震動に対する地盤の変状や地下水位

を与えた場合の排水機能を明らかにするために、 腹付盛土の形状、大型土のうの配列、盛土内の排 水条件(盛土下層部の基盤排水層及び土のう中詰 め材の排水機能の有無)等をパラメーターとして 設定した。各ケースの仕様を表・2に、補強土タイ プと安定勾配タイプの代表的な断面形状を図-3に 示す。CASE-1は、土のうは配列せず一般的に本 設構造物として採用されている補強土を模擬した ケースとし、CASE-2、CASE-6は、排水性能を 有する大型土のうを適用したケースとした。 CASE-3、CASE-7は、大型土のうの背面にベン トナイト層を設けることで大型土のうの排水性能 を低下(不透水)させ、CASE-4、CASE-8は、 大型土のうの配列を上部(2列)と下部(3列) で変化させた。配列の変化点は、既往の実験結果 等を考慮して大型土のうの設置高さの1/2とした。 CASE-5は一般的な安定勾配で復旧した盛土(無 補強)を模擬したケースとした。

表・2 実験ケース

ケース	腹付盛土 形状	土のう配列	基盤排水層	土のう中 詰め材
CASE-1	補強土タ	無し	全面	
CASE-2	イプ(勾	2列	部分	透水
CASE-3	配1:	2列	部分	不透水
CASE-4	0.5)	2、3列	部分	透水
CASE-5	安定勾配	無し	全面	—
CASE-6	タイプ	2列	部分	透水
CASE-7	(勾配1:	2列	部分	不透水
CASE-8	1.0)	2、3列	部分	透水

模型を製作するに当たり、大型土のうは不織布 (透水係数:2.7×10-2 cm/s)を用い、縦20×横 20×高20mm (実スケールで1.0×1.0×1.0m相当) の立方体に作成した(写真-5)。大型土のうの中 詰材には7号砕石とジリコンサンドを混合した材 料 (p t=1.80g/cm³) を用いた。補強材は実ス ケールで必要となる引張剛性E·t(E:弾性係数、t:厚さ)が本実験の相似則に合うようにポリエ チレン製のジオテキスタイル(E・t=36.0kN/m) を使用した。補強材の敷設長及び引張剛性は、ジ オテキスタイルを用いた設計・施工マニュアル4) により算出した。補強土タイプの腹付盛土の壁面 材には、高さ10mmのステンレス製のL型アング ルを使用した。補強材とL型アングルとは接着剤 を用いて接続した(写真-6)。盛土材は表-3に示 す江戸崎砂を用いた。盛土の締固め条件は、実際 の現場条件を想定し、補強土領域は締固め度 Dc=95%、CASE-5及び腹付盛土の領域は締固め 度Dc=90%とした。基礎地盤及び盛土背面の地山 は、江戸崎砂とセメントを混合した改良土を用い て堅固な地山条件を再現した。

写真-5 大型土のう

写真-6 壁面材と補強材

項目		Dc=90%	Dc=95%	
土粒子の密度		2.746		
	礫分(%)			
粒度	砂分(%)	91	1.7	
分布	シルト分(%)	3	. 7	
	粘土分(%)	4	. 6	
均等係数U		3.09		
透水係数(cm/s)		1.10×10 ⁻⁴	1.02×10 ⁻³	
最大乾燥密度 (g/cm ³)		1.761	1.578	
最適含水比(%)		18.0		
湿潤密	度(kN/m ³)	17.27	18.27	
粘着力	$c(kN/m^2)$	5.15	14.21	
せん断	抵抗角φ(°)	33.72	35.76	

表・3 盛土材(江戸崎砂)の物性

4.2 実験手順

実験は、遠心加速度を50Gまで上昇させ、模型の状態が安定した後に盛土背面の地山から水を盛

土内に供給した。その後、盛土内の間隙水圧が安 定した後に入力加速度150、250gal(レベル1相 当)、350、500gal(レベル2相当)の正弦波 (2.0Hz)を20波ずつ段階的に加振した。計測器 の配置を図・4に示す。計測項目は、標点による盛 土及び大型土のうの変位、盛土内の土圧、応答加 速度、間隙水圧、及び補強材のひずみ等とした。

4.3 実験結果

4.3.1 盛土全体の挙動

写真-5に加震後の実験断面の例を示す (CASE-6)。安定勾配タイプでは、前面の腹付盛 土の領域ですべり崩壊が生じているが、地山と大 型土のうに挟まれた領域では、地山境界部で僅か なクラックが発生したものの大規模な変状は生じ ていないことが確認できた。補強土タイプは、腹 付盛土も含めて大規模な変状は生じなかった。

図・4 計測器の配置

写真-5 加震後の状態 (CASE-6)

図-5に各ケースの入力加速度250gal加振後と 350gal加振後における盛土の相対変位分布を示 す。何れのケースにおいても、土粒子の変位量は 盛土下部では微小であり、盛土上部で多く生じる 傾向を示した。また、排水条件だけが違う CASE-2とCASE-3、及びCASE6とCASE7を比較 することにより、盛土の変形は盛土の含水状態が 影響し、排水性を有する大型土のうの適用は、盛 土の変形を抑制することが確認できた。

図-6は、図-5と同条件におけるせん断ひずみ分 布例(CASE-2, CASE-6)を示す。せん断ひず みは補強材が敷設されていない地山付近の盛土箇 所や、安定勾配タイプにおいては腹付盛土で顕著 に見受けられ、無補強領域で生じていることが確 認できた。

図 5 相対変位分布

4.3.2 大型土のうの挙動

図-7は加振後における後列(地山側)の大型土 のうと大型土のうの背面に位置する盛土に設けた 標点の水平変位の相関を示す。大型土のうと盛土 の水平変位は同程度の変位を示しており、0.9程 度の強い相関性が認められ、大型土のうと盛土は 一体的に挙動していることが確認できた。

図-8は、入力加速度500gal 加振後における後 列(地山側)の大型土のうの水平変位を示す。大 型土のうの変形は、補強土タイプと安定勾配タイ プで異なる挙動を示した。補強土タイプでは盛土 下部からはらみ出す変形を、安定勾配タイプでは 盛土下部の水平変位は抑制され、中間付近から水 平変位が増加する変形を示した。これは、大型土 のう前面に腹付けした盛土の影響によるものと考 えられる。

4.3.3 応答変位

図-9は、入力加速度500gal 加振時における補 強土タイプ (CASE-2) 及び安定勾配タイプ (CASE-6)の隣接した大型土のうの応答変位を 示す。前列と後列の大型土のうの応答変位は、振 幅の大きさが異なるものの、概ね同位相の傾向を 示した。この結果から、地震動等の作用による土 のう間における隙間や水みち等の発生の可能性は 低いことが確認できた。

4.3.4 間隙水圧

図・10は、盛土底盤における地山との境界付近 に設置した間隙水圧計P-2(実線)及び盛土の中 間に位置する間隙水圧計P-4(破線)の加振時に おける過剰間隙水圧(最大値)の変化を示す。大 型土のうの中詰め材の違いによる盛土底部(実線) の間隙水圧を比較すると、補強土タイプ及び安定 勾配タイプともに、不透水状態にあるCASE・3や CASE-7の方が、透水状態であるCASE・3や CASE-6よりも高い値を示した。この結果から、 排水機能を有する大型土のうの適用が過剰間隙水 圧の抑制に有効であることが確認できた。

5. まとめ

大型土のうを用いた本復旧盛土の適用性につい て、動的遠心力模型実験を実施し、以下の知見が 得られた。

- ①排水性能を有する大型土のうの適用は、盛土の 変形及び過剰間隙水圧の抑制に有効である。
- ②隣接する土のうは一体的な挙動を示しており、 隙間や水みち等の発生は確認されなかった。
- ③下層部を3列配置にした場合でも、2列配置と 同様な挙動であり局部での変形等は見られな かった。

今後は、実大モデルを構築し施工性や交通荷重に よる影響及び長期的耐久性の検証が必要と考えて おり、現在、土木研究所構内における実大実験の 実施に向けて検討しているところである。

また、これらの研究成果を取り纏め、大型土の うを用いた災害復旧対策工法マニュアル(案)を 作成したいと考えている。

参考文献

- 久保、森、宮武:大規模土砂災害による被災現場の 効率的な復旧法の検討、ジオシンセティックス技術 情報誌、pp.11~18、2014.11
- NEXCO中日本:【緊急報告】東名復旧までの115 時間<駿河湾を震源とする地震による東名高速被 災応急復旧報告>、2009.8
- 国土交通省北陸地方整備局:能登半島地震による 能登有料道路の被害と復旧、2007
- (一財) 土木研究センター:ジオテキスタイルを用いた補強土の設計・施工マニュアル、2000

主任研究員 Yoshinori MORI

久保哲也

研究当時 土木研究所地質・ 地盤研究グループ施工技術 チーム交流研究員、現 前田 工繊(株) Tetsuya KUBO

