## 特集報文:持続可能な土砂マネジメント

# ダムからの土砂供給に伴う物理環境変化を予測する 河床変動モデルの開発

## 1. はじめに

近年、ダム貯水池の堆砂問題や総合土砂管理の 視点からダムからの排砂、置土等の土砂供給が多 く実施されてきているが、掃流砂観測が困難なこ となどから、どの様な粒径の材料がどこまで流下 するのかなどが十分に明らかとなっていない。一 般的には混合粒径の河床変動モデルでの再現計算 により流砂量の推定等を行う場合が多いが、沖積 河川を対象とした比較的粒度分布幅の狭い混合粒 径材料での検討に基づく流砂量式等が使用されて おり、ダム周辺の粒度分布幅の広い河床材料での 適用に課題があると指摘されている<sup>1)</sup>。このため、 本研究はダム周辺の粒度分布幅の広い多様な河床 材料で構成されている河川を対象として、水理実 験により流砂量および河床変動に関して粒径集団 の粒度分布や空隙率の変化の影響を明確にすると ともに、これらを考慮する河床変動モデルを開発 することを目的として実施したものである。

### 2. 水理実験

### 2.1 実験方法

水理実験は、長さ60m、幅2m、勾配1/100の直 線実験水路を使用し、河床材料は図-1に示す6種 類の粒度分布の材料を使用した。各河床材料の ケースで、1回目にほぼ平坦に一様に敷均した河 床形状を初期河床として小さな流量で通水し、2 回目に大きな流量で1回目の通水後の河床形状を 初期河床として通水した。通水中および通水後に 水位・流速・流砂量・河床形状・流砂の粒度分布 等を測定し、河床材料の粒度分布等の違いによる 河床変動特性の相違を検討した。表-1に実験ケー ス一覧を示すとともに河床材料の特性値を示す。

河床材料の粒度分布変化については、各ケース で4~5地点を選定し、(1)通水中の流砂(写真-1 に示す掃流砂採取器で採取)、(2)通水後の河床表 石神孝之・櫻井寿之・中西 哲



| 河床材料  |                      |                     |                 | 流量        | 通水時間 |
|-------|----------------------|---------------------|-----------------|-----------|------|
|       | d <sub>50</sub> (mm) | d <sub>m</sub> (mm) | $d_{84}/d_{16}$ | $(m^3/s)$ | (分)  |
| 単一粒径  | 5.4                  | 5.6                 | 1.6             | 0.127     | 150  |
|       |                      |                     |                 | 0.186     | 120  |
| 混合粒径1 | 5.4                  | 6.7                 | 3.9             | 0.127     | 168  |
|       |                      |                     |                 | 0.186     | 127  |
| 混合粒径2 | 5.6                  | 9.3                 | 5.3             | 0.127     | 159  |
|       |                      |                     |                 | 0.186     | 117  |
| 混合粒径3 | 6.5                  | 13.9                | 22.3            | 0.186     | 108  |
|       |                      |                     |                 | 0.300     | 100  |
| 混合粒径4 | 5.5                  | 11.8                | 10.4            | 0.186     | 100  |
|       |                      |                     |                 | 0.300     | 100  |
| 混合粒径5 | 6.6                  | 19.9                | 70.7            | 0.186     | 100  |
|       |                      |                     |                 | 0.300     | 100  |

面の試料(幅10cm× 長さ15cm×厚さ約 2cm)、(3)通水後河 床の円形**Φ**19.5cm× 厚さ約10cmの試料 の各々を同一箇所で 採取するとともに、



写真·1 掃流砂採取器

水路下流端から流出し沈砂池で捕捉した流砂につ いてふるい分け試験を行った。なお、水路上流部 河床を砂の供給部分としており、上流端での河床 材料の供給は行っていない。

また、通水後の河床材料の採取について、前述 の(3)の円柱形での採取では、内径 Ø19.5cmの円 筒のサンプラー(アクリル製)で採取厚さを計測 して空隙を含んだ体積を算定した。採取した材料 のふるい分け試験による粒度分布と合わせて採取 した試料全体の重量を計測し空隙率を算定した。

## 2.2 実験結果

## 2.2.1 河床材料と流砂の粒度分布幅

図-2は、流量別に各ケースにおける前述の(2) で採取した表層の河床材料(通水前・後)と流砂 (前述の(1)で採取した材料)の粒度(d<sub>50</sub>,d<sub>m</sub>及び d<sub>10</sub>~d<sub>90</sub>の範囲を明示)について比較したもので

Development of a River Bed Variation Model to Predict Physical Environment Changes Associated with Sediment Supply from a Dam



ある(棒グラフの棒の長さがd50(薄い色)、dm (濃い色)、縦方向バーがd10~d90の範囲)。

ここで、流砂の粒径範囲(特に上限側のd<sub>90</sub>) に着目すると、河床材料の粒度分布幅が広くなっ ても、一定の粒径(10mm~20mm程度)以下の 材料が流下していることが分かる。また流量が大 きくなると、混合粒径3、5のように流砂の粒径 範囲(上限側のd90)が若干ではあるが大きく なっている。このことは、河床材料の粒度分布幅 にほぼ関係なく、水理量に応じて、ある一定の粒 径以下の材料が流下することが示唆されるもので ある。そこで、実験の各流量に対して、岩垣2)に よる一様粒径の無次元限界掃流力の実験式から逆 算で求まる粒径(移動限界粒径)を図-2に示した (破線)。流量Q=0.127m<sup>3</sup>/sの場合は流砂の粒径範 囲(上限側のd<sub>90</sub>)が移動限界粒径を上回ってい るが、流量Q=0.186m<sup>3</sup>/s及びQ=0.3m<sup>3</sup>/sの場合は 何れの河床材料のケースでも流砂の粒径範囲は移 動限界粒径以下に収まっている。

一般的に混合粒径の場合は一様粒径の場合に比 べて粒径の大きな材料が動きやすいことが示され ている<sup>1)</sup>が、以上の結果を整理すると、今回の粒 度分布幅の広い河床材料の場合は、流砂の最大粒 径については、岩垣による無次元限界掃流力の一 様粒径の実験式の逆算から求められる移動限界粒 径程度であることが明らかとなった。

## 2.2.2 河床材料の粒度分布と空隙率

河床材料の粒度分布が極端に変化しないような

図-4 流砂量算定方法改良の概要

空隙率

場合は、河床変動は空隙率を一定にして計算して いることが多い<sup>3)</sup>。本研究では通水前後で河床材 料の粒度分布が変化していることが考えられるこ とから、各ケースの通水前後の河床材料の粒度分 布変化と空隙率変化を比較検討した結果、通水に より河床材料の粒度分布が変化するとともに、空 隙率も変化する結果が得られた。そこで、粒度分 布と空隙率の関係について検討を行った。

河床材料の粒度分布と空隙率の関係については、 藤田ら<sup>3)</sup>、Sulaimanら<sup>4)</sup>により検討された事例が あり、これらを参考にして、水理実験の結果から 対数正規分布型での標準偏差 $\sigma_L$ と空隙率 $\lambda$ の関係 について図-3のとおり整理した。対数正規分布型 の粒径dに対する密度関数は次式で示すとおりで ある。 $(d_{mg}: 幾何平均粒径(=d_{50}))$ 

$$p(\ln d) = \frac{1}{\sqrt{2\pi\sigma_L}} \exp\left[-\frac{(\ln d - \ln d_{eg})^2}{2(\sigma_L)^2}\right] \qquad \vec{x}(1)$$

河床材料の粒度分布型としては対数正規分布型 とはいえないケースのものがあるが、図-3に示す とおり全体的には標準偏差σLの値が大きいほど 空隙率λが小さくなっている傾向が見られる。参 考とした既往の研究<sup>3),4)</sup>においても同様な結果が 得られており、この全体的な傾向を近似する式と して指数関数での近似式を検討し次式を得た。

#### 土木技術資料 58-10(2016)



図-6 粒径別流砂量(下流端)の実験値と計算値との比較

## 3. 河床変動モデル

## 3.1 平面2次元河床変動モデルの改良

河床変動モデルは、櫻井ら<sup>5</sup>が開発した直交格 子の平面2次元河床変動モデルを元に水理実験等 の結果を考慮して、流砂量式の見直し、空隙率変 化の考慮等の改良を行った。図・4に改良の概要を 示す。

改良前のモデルにおいて流砂量算定に使用して いる基礎式は、混合粒径の河床変動計算でよく使 用される芦田・道上の流砂量式0を採用している。

改良後のモデルは、芦田・道上の流砂量式を基本としつつ、移動限界粒径以下の河床材料のみが 移動するものとし、代表粒径にその粒径集団の平 均粒径を適用するものとした。また、空隙率につ いては、前述の式(2)に示す河床材料の対数正規 分布型での標準偏差σLと空隙率λの関係式を導入 した。詳細については、筆者ら<sup>7),8)</sup>の論文を参照 されたい。

### 3.2 検証結果

改良した河床変動モデルについて、前述の水理 実験の再現計算により検証を行った。図-5に全流 砂量、図-6に粒径別流砂量、図-7に河床形状の結 果の代表事例を示す。改良前のモデルの結果を 「計算(通常)」、流砂量の算定方法のみ改良した モデルの結果を「計算(流砂量式)」、流砂量及び 空隙率変化を改良したモデルの結果を「計算(空 隙率)」と示す。

図-5、6に示すとおり、通常の計算手法である 改良前のモデルでの計算では、流砂量がかなり過 小に算定される結果となった。流砂量の算定方法 を改良した結果、流砂量はかなり実験結果に近く なった。さらに、空隙率変化を考慮することで、 流砂量がやや過大に算定されていた混合粒径5の 流量Q=0.3m<sup>3</sup>/sのケースでもかなり実験値に近い ものとなった。

河床形状については、図-7に示すとおり、通常 の計算手法である改良前のモデルでの計算では、 流砂量がほとんど無い結果の影響を受け、河床形 状の変化がほとんど無い状況となった。流砂量の 算定方法を改良した結果、上流側の河床が大きく 低下するとともに下流側は河床が上昇し、実験結 果とかい離する結果となった。しかし、さらに空 隙率変化を考慮することで、上流側の河床低下お よび下流側の河床上昇が緩和され、かなり実験結 果に近い形状となった。



縦断距離(m)
図-7 通水後の河床形状(河床材料厚)
[混合粒径2(流量Q=0.186m<sup>3</sup>/s)]

## 4. おわりに

ダム周辺の粒度分布幅の広い多様な河床材料で 構成されている河川を対象として河床変動計算を 行う場合、流砂量の算定において一様粒径を対象 とした岩垣式で求められる移動限界粒径以下の粒 径集団を対象とすることが有効であることが確認 された。さらに、河床材料の対数正規分布型での 標準偏差σLと空隙率λの関係式を導入することに より河床形状変化の推定に有効であることが確認 された。

これらを考慮した河床変動モデルを用いること で、ダムからの土砂供給に伴う下流河川の流砂量 や河床表面の状態などの物理環境変化の予測精度 の向上が期待できるものと考えられる。

### 参考文献

 藤田光-ほか:ダムと下流河川の物理環境との関係 についての捉え方、国総研資料第521号・土研資料 第4140号、pp.1-13~1-21、pp.6-4~6-10、2009

- 2) 岩垣雄一:限界掃流力の流体力学的研究、土木学会 論文集、第41号、pp.1~21、1956
- 3) 藤田正治ほか:河床材料の空隙率の変化を考慮した 河床変動モデルとその適用、河川技術論文集、 第14巻、pp.13~18、2008
- Muhakmmad Sulaiman et al. : Porosity of sediment mixtures with different type of grain size distribution, AJHE, JSCE, Vol.51, 23, 2007
- 5) T. Sakurai & N. Hakoishi : Numerical simulation of sediment supply from dam reservoirs to downstream by the placed sediment, Advances in River Sediment Research- Fukuoka et al. (eds), pp.1193-1199, 2013
- 6) 芦田和男、道上正規:移動床流れの抵抗と掃流砂量 に関する基礎的研究、土木学会論文報告集、第206 号、pp.59~69、1972
- 7) 石神孝之ほか:河床材料の粒度分布幅の広い河川に おける河床変動特性の実験的検討および河床変動モ デルの開発、河川技術論文集、第20巻、pp.265~ 270、2014
- 8) 石神孝之ほか:河床材料の空隙率および交換層厚変 化を考慮した河床変動モデルの開発、河川技術論文 集、第21巻、pp.131~136、2015



土木研究所水工研究グループ 水理チーム 上席研究員 Takayuki ISHIGAMI



土木研究所水工研究グループ 水理チーム 主任研究員 Toshiyuki SAKURAI



土木研究所水工研究グループ 水理チーム 研究員 Satoru NAKANISHI