メコン川下流域における流出氾濫解析と衛星情報を用いた 氾濫原上の諸量の検証

1. はじめに

洪水氾濫による被害を軽減するには、氾濫原の水 の挙動を理解し、浸水深や浸水継続時間等を適切に 把握した上で対策を講じる必要がある。これらの情 報を推定、予測する上では流出氾濫現象を再現する モデルの構築が重要である。一般的に降雨流出過程 を表すモデルの妥当性の精査には、河道の水位や流 量を観測値と比較する場合が多く、氾濫を表現する モデルの場合は人工衛星から得た情報や現地調査か ら推定した氾濫域を計算結果と比較する場合が多い。 一方、洪水中の浸水深や浸水時間など被害に直結す る情報を扱う上では、氾濫域のみならず、氾濫原の 水の量及びその挙動も検証する必要がある。そこで 本報では、降雨流出と氾濫を一体的に解くモデルを 用いて流出氾濫解析を実施し、最初に河道内の水位 及び流量の検証を実施した上で、氾濫原上を流れる 水の流量(以下「氾濫流量」という。)にも着目し、 モデルで計算した氾濫流量と衛星情報から推定した 氾濫流量を比較する。図-1は対象としたメコン川下 流域である。当該地点は毎年のように洪水氾濫が発 生し、本研究を実施する上で適した地点である。な お、主要洪水の一つである2011年洪水を対象とし た。

2. 流出氾濫解析

2.1 手法

本報では降雨流出氾濫(RRI)モデル2)を用いた。 このモデルは、以下に示す通り、二次元の連続式と 運動方程式を拡散波近似して解く。

$$\frac{\partial h}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = r - f \dots \vec{x}(1)$$
$$q_x = -\frac{1}{n} h^{\frac{5}{3}} \sqrt{\left|\frac{\partial H}{\partial x}\right|} \operatorname{sgn}\left(\frac{\partial H}{\partial x}\right) \dots \vec{x}(2)$$

俊・萬矢敦啓・岩見洋一 工藤

$$q_{y} = -\frac{1}{n} h^{\frac{5}{3}} \sqrt{\left|\frac{\partial H}{\partial y}\right|} \operatorname{sgn}\left(\frac{\partial H}{\partial y}\right) \dots \overrightarrow{\mathfrak{R}}(3)$$

ここで、qx、qyはx,y方向の単位幅流量、hは水深、 rは降雨強度、fは鉛直浸透強度、Hは水位、nはマ ニングの粗度係数、sgnは符号関数である。

標高分布は、USGSが公開し標高及び河道網情報 が得られるHydroSHEDSから、SRTMデータを入 手した。鉛直浸透流はGreen-Amptモデルを用いて おり、パラメータは当該地点の土性を勘案し、クレ イロームに相当する値を用いた。斜面の等価粗度係 数は0.4m^{-1/3}sとし、河道の粗度係数は工藤ら³⁾の手 法を用い、無次元掃流力に応じて時々刻々と変化さ せた。降水量は地上雨量計による観測結果を Thiessen法で補間した。境界条件は、図-1におけ るKratie地点で、H-Q式から換算した流量を上流端 境界条件として与えた。また、河道の幅と深さにつ いては、現地観測結果に基づき、縦断的に分布した 値を設定した3)。

2.2 河道内の水位及び流量の検証

図-2及び図-3に水位、流量の観測結果と計算結果 の比較をそれぞれ示す。ここで、図中のNSEは ナッシュ効率係数である。水位について、メコン川 本川の2地点は、特に洪水期に観測結果と計算結果 が良く整合する。一方、支川のBassac川及びTonle Sap川は計算水位が過大となる傾向がある。これは、

解析対象範囲1) 図-1

Runoff Inundation Analysis in the Lower Mekong River Basin and Validation of Variables over a Floodplain Using Satellite Information

主に河道条件の設定、特に粗度係数の設定に起因す ると考えられる。今回は、上述の通り無次元掃流力 に応じて粗度係数を時々刻々と変化させた。それに あたり、粒径を与える必要があり、今回はメコン川 本川で竹林ら4により観測された結果を参考に 0.5mmを一律で与えた。一方、支川では粒径が異 なる可能性があり、特にTonle Sap川では粒径が本 川よりも小さい4。工藤ら3によると、当該地点は 無次元掃流力が大きくなると粗度が低下するため、 粒径が小さい場合には無次元掃流力が大きく、粗度 が低下し水位が低下する。すなわち、粒径の空間分 布を考慮することで水位の再現性が向上すると期待 できる。また、Tonle Sap湖の結果に着目すると、 一部では計算水位が観測水位を良好に再現するが、 計算水位が過少となる。これは、湖底の形状の設定 に起因すると考えられる。今回は、SRTMを一律で

を反映することで、湖の水位と湛水量の関係がより 正確となり、水位の再現性の向上が期待できる。

流量については、Kampong Loung地点は湖上の 水位観測地点のため、これ以外の地点で観測データ と計算結果を比較したその結果、いずれも良好に計 算できることを確認した。図-3はNSEが最も低い 値となったPrek Kdam地点の結果である。洪水期 から乾季への移行期間は計算流量が過少になり、こ れはTonle Sap湖の計算水位の過少に起因すると考 えられる。一方、Tonle Sap川の逆流も再現されて おり、傾向を良好に捉えた結果であることが確認で きる。

3. MODISデータを用いた氾濫水の推定

3.1 氾濫域の推定

MODIS(Moderate Resolution Imaging Spectrometer)か ら得られる反射率データを用いて氾濫域を推定する。 これまで、NDWI、LSWIなど、複数の周波数帯の 反射率データを駆使して水域を検出する手法が提案 されてきた。これらの技術はある閾値を設けた上で、 その値を境に水域と陸域を判別する。適切な閾値を 設定できる場合は水域を良好に検出できるが、その ためには思考錯誤を重ねる必要があり、設定した閾 値の客観性の説明が難しい場合もある。これは各ピ クセルにおける反射率を直接用いる手法である。一 方、本報ではGradient Based Method(GBM)と呼 ばれる手法に着目し、これを修正した。GBMは画 像解析手法の一つで、データの空間的な勾配を利用

図-4 氾濫域検出手法の適用例⁵⁾ (左:式(5)の分布,右:式(7)の分布)

する。また、本技術はMODISのband1(可視域 赤)とband2(近赤外域)の差の勾配に着目した。 band1とband2は日データとして公開されており、 空間解像度は250mである。他の周波数帯は8日毎 のデータとなる8-day compositeデータであり、空 間解像度は500 m である。より詳細な時空間解像 度データを使用することも、本手法の大きな利点の 一つである。以下、手法の概略を説明するが、さら に詳細な説明はBiswas et al⁵⁾を参照されたい。式 (4)は反射率の差の勾配を表し、これの絶対値は式 (5)で表わされる。

$$\overline{G}(x, y) = \left(\mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial x}\right)f(x, y) \dots \overrightarrow{\mathbf{x}}(4)$$
$$M(x, y) = \sqrt{\left(\frac{\partial f(x, y)}{\partial x}\right)^2 + \left(\frac{\partial f(x, y)}{\partial y}\right)^2} \dots \overrightarrow{\mathbf{x}}(5)$$

ここで、 $\overline{G}(x,y)$ は反射率の差の勾配、f(x,y)は 反射率の差、M(x,y)は $\overline{G}(x,y)$ の絶対値である。

これは勾配に着目することから、土地被覆の境界 を強調できる。一方、土地被覆そのものの判別は難 しい。そこで、本報では反射率の差に加重平均を付 加した項を導入した。式(6)は式(4)を修正したもの であり、式(7)は式(6)の絶対値を表す。

$$\overline{G}'(x, y) = \left\{ \left(\mathbf{i} \frac{\partial}{\partial x} + W \right) + \left(\mathbf{j} \frac{\partial}{\partial y} + W \right) \right\} f(x, y) \dots \overrightarrow{\mathbf{x}}(6)$$
$$M'(x, y) = \sqrt{\left(\frac{\partial f(x, y)}{\partial x} + [W]f(x, y) \right)^2 + \left(\frac{\partial f(x, y)}{\partial y} + [W]f(x, y) \right)^2} \dots \overrightarrow{\mathbf{x}}(7)$$

ここで、
$$\overline{G}'(x,y)$$
は反射率の差の勾配を修正したも

の、M'(x, y)は $\overline{G}'(x, y)$ の絶対値である。

図-4は、Biswas et al⁵⁾が示した本手法の適用例 を示す。網状河川であるジャムナ川で適用した例で ある。図-4左では、土地被覆の境界を強調できるが、 どちらが河道かを判別することが難しい。なお、参 考として実際の河道位置を図中に示した。一方、図 -4右は河道及びその中に存在する砂州を明瞭に判別 できる。

図-5に、当該地点に対して本手法を適用した結果 を示す。また、RRIモデルによる推定結果を併せて 示す。なお、コンターは流速の絶対値を示しており、 詳細は後述する。図を比較すると、下流域において

若干の差が見受けられるものの、全体としては良好 に整合することが確認できる。

3.2 流速場の推定

氾濫水の水位分布を推定した上で、マニング式か ら流速場を推定する。水位分布の推定手順は、初め に、氾濫域と陸域の境界の地盤標高をその地点の水 位とし、境界に沿った線状の水位分布を得た上で、 それを空間内挿して氾濫域内の面的な水位分布を得 た。さらに流速場を推定するために、水位分布から 求めた水面勾配分布、水位から地盤標高を差し引い て求めた水深分布を用いて、等価粗度係数を 0.4m⁻¹³s としたマニング式から流速場を推定した。図-5 に MODIS から得た流速場と RRI モデルから得た 流速場を示す。両者を比較すると、全体としては概 ね同様の傾向を再現するが、特に国道 8 号線 (NHW8)の下流側では MODIS から推定した流速が 大きい結果となった。

3.3 氾濫流量の比較

流速分布と水深分布から氾濫流量を推定する。 図-5 に示す通り Sec0~Sec3-2 を定義し、それぞれ の氾濫流量を図-6 に示す。Sec2 と Sec3-1 は RRI モデルによる氾濫流量と MODIS による氾濫流量 が概ね良好に一致する。Sec2 は Tonle Sap 川周辺 の氾濫流量であり、洪水期に流れ方向が逆転する特 徴を RRI モデルと MODIS の両者が再現する。一 方で Sec0 に着目した場合、両者が乖離する。Sec0 はメコン川本川左岸側の氾濫原にあるが、当該箇所 は NHW8 やトンレトーチ川が存在し、氾濫水が複 雑な挙動を示す地点である。また、当該地点は灌漑 用の小規模な水路が多数存在し、これによる氾濫原 への導水効果をモデル化することで、計算精度の向 上が期待できる。

まとめ

本報は、頻繁に洪水氾濫が発生するメコン川下 流域を対象に流出氾濫解析を実施した。そして河道 内の水位と流量の検証のみならず、氾濫原上の水の 流量を衛星情報から推定し計算結果と比較した。こ の技術は特に途上国の大規模流域の洪水氾濫現象把 握に役立つと期待できる。今後は、モデルによる計 算と衛星情報による推定結果が合わない部分につい て検討を進める必要があると考える。

謝 辞

本研究の実施にあたり、メコン河委員会事務局か ら貴重なデータを提供して頂いた。また、カンボジ アの国家災害対策委員会(NCDM)から現地調査を補 助して頂いた。ここに記して謝意を表する。

参考文献

- S. Kudo, A. Yorozuya, H. Koseki, Y. Iwami and M. Nakatsugawa: Inundation process in Lower Mekong River Basin, Journal of Disaster Research. (In press)
- T. Sayama, G. Ozawa, T. Kawakami, S. Nabesaka and K. Fukami: Rainfall-runoff-inundation analysis of the 2010 Pakistan flood in the Kabul River basin, Hydrological Sciences Journal, pp.298-312, 2012
- 工藤俊、萬矢敦啓、E.D.P PERERA、小関博司、岩 見洋一、中津川誠:メコン川下流域の洪水氾濫に対 する観測結果を反映した河道条件の影響分析、土木 学会論文集B1(水工学)、Vol.72、No.4、I_145~ I_150、2016
- 4) 竹林洋史、中元達也、藤田正治:粘着性・非粘着性 河床材料混在場における土砂輸送特性・トンレサッ プ川と対象として、京都大学防災研究所年報 第 52号B、pp.637~645、2009
- 5) R. K. Biswas, A. Yorozuya and S. Egashira: Modified Gradient Based Method for Mapping Sandbars in Mega-Sized Braided River Using MODIS Image," Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol.72, No.4, I_931-I_936, 2016

土木研究所水工研究グループ 水文チーム研究員 Shun KUDO

土木研究所水工研究グループ 水文チーム 主任研究員、Ph.D. Atsuhiro YOROZUYA

岩見洋一

土木研究所水災害・リスクマネ ジメント国際センター水災害研 究グループ 上席研究員 Yoichi IWAMI