特集報文:CAESAR10周年道路橋の安全管理のための構造技術開発

RC巻立て補強された橋脚に対する限界状態の評価方法の提案

1. はじめに

平成29年に橋の設計基準である道路橋示方書1) (以下「道示」という。)が改定された。橋に求めら れる耐荷性能は、橋が置かれる状況に対して、橋が 必要な状態に留まることが所要の信頼性で実現され ることとされ、その照査の方法として、限界状態設 計法及び部分係数設計法が導入されている。従来の 許容応力度法では安全余裕が1つの係数で与えられ ていたが、不確実性の要因ごとに部分係数が設定さ れ安全余裕が考慮できる形となり、信頼性を確保し つつ条件に応じてより合理的な設計が可能となって いる。

一方、国内では多くの橋梁ストックを抱えてお り、それら橋梁の安全性を確保し、合理的に維持管 理していくことが重要な課題となっている。既設橋 の耐震性の向上を図るため、これまでに耐震補強が 行われてきている。耐震補強においても、補強部材 の限界状態の評価方法、不確実性を反映した部分係 数等を提示し、橋の状態を適切かつ精度よく評価す る方法を示すことは、安全で適切な橋梁の維持管理 に資するものと考えられる。

本稿では、既設橋の耐震補強設計における限界 状態設計法及び部分係数設計法の導入のための検討 の一環として、既設橋の鉄筋コンクリート橋脚(以 下「RC橋脚」という。)を対象に、鉄筋コンクリー ト巻立て(以下「RC巻立て」という。)により耐震 補強を行う際の限界状態の評価方法を検討した結果 を報告する。

2. RC橋脚の限界状態とRC巻立てへの適用

補強部材の限界状態設計法及び部分係数設計法の 導入にあたっては、損傷の進展メカニズムを踏まえ て、限界状態を適切に設定する必要がある。RC橋 脚は、実験等により損傷の進展メカニズムを明らか にし、そのメカニズムを踏まえた限界状態の評価方 法をCAESARで提案2)しており、その評価方法は道

限界状態2 限界状態3 水平力_P して期待できる限界) 軸方向鉄筋のはらみ出し) $P_a =$ $P_v = P_u$ (軸方向鉄 筋の破断) 限界状態1 $P_{\nu 0}$ δ_{ls2} 水平変位 δ_ Sis

大住道生・澤田

守·宮田秀太

図-1 RC橋脚の水平力・水平変位関係と限界状態 示に反映されている。

図-1にRC橋脚の水平力・水平変位関係と、曲げ破 壊型の損傷の進展メカニズムに応じた限界状態を示 す。あわせて、代表的な損傷例も示す。RC橋脚に おける損傷の進展メカニズムは、地震の影響により 繰返し作用を受けたとき、ある段階で軸方向鉄筋が 降伏し、さらに水平変位が大きくなると、かぶりコ ンクリートの剥落や軸方向鉄筋のはらみ出しが進展 し、その後、水平耐力が低下する。提案した評価方 法は、この軸方向鉄筋のはらみ出し挙動と、軸方向 鉄筋がフーチングから伸び出すことによる橋脚基部 の回転成分に伴う橋脚天端変位を考慮することで、 精度の高い評価方法となっている。しかし、この評 価方法は既往の実験等の条件において適用が確認さ れているものであり、既設橋の耐震補強において、 同様の考え方に基づく評価方法は確立していない。

既設橋におけるRC橋脚の耐震補強は、RC巻立て、 鋼板巻立て、炭素繊維巻立て等、様々な補強工法が ある。いずれもRC橋脚の外側を拘束し、軸方向鉄 筋のはらみ出し挙動等に対して抵抗し効果を発揮す るものである。その中でRC巻立て工法は、既設橋 のRC橋脚に対して断面周囲の補強部に、軸方向鉄 筋及び巻立てるコンクリートを配置した構造である。

本検討はRC巻立て工法を対象とし、土木研究所 で行った2体のRC巻立て供試体^{3),4)}の実験結果を用 いて、RC橋脚における評価方法と同様の観点で分 析した。限界状態の評価にあたっては、軸方向鉄筋

Proposal of an Evaluation Method for the Limit States of Bridge Columns Retrofitted by RC Jacketing

図-3 限界状態3における損傷状態(代表面)

のフーチングからの伸び出しによる変位、軸方向鉄 筋のはらみ出しを考慮した塑性ヒンジ長とこれを用 いて限界状態における引張鉄筋ひずみを求める必要 があり、これらの検討結果を3章に示す。また、こ れらを踏まえて、RC巻立てに対する損傷の進展メ カニズムに基づく評価方法への適用性及び精度を検 証した結果を4章に示す。

3. RC巻立ての限界状態に関する各種検討

3.1 対象供試体の概要と限界状態の整理

対象供試体の配筋図を図・2に、供試体諸元を表・1 に示す。両供試体ともに、断面幅と断面高さの比が 3.0程度となる壁式橋脚で、載荷高さと断面高さの 比で表されるせん断スパン比が4.0から6.0程度とな る。これらは、一般的に耐震補強の対象となり得る 諸元を想定して設定されたものである。実験では、 補強部における最外縁の軸方向鉄筋が降伏するとき の橋脚天端変位&を基準とし、1&ごとに同一変位 による載荷を3回繰返した正負交番載荷試験により、 繰返しによる影響を確認している。

限界状態に相当する変位は図-1に示す観点で、限 界状態2を水平力の低下がほとんどなく3回繰返し が安定している状態(エネルギー吸収が安定)、限

表·1 供試体構造諸元

種別	項目	単位	No.1供試体		No. 2供試体	
			既設部	補強部	既設部	補強部
寸法	断面寸法	mm	1880x400	2140x660	1800x600	1950x750
	巻立て厚	mm	_	130	_	75
	橋脚(載荷)高さ	mm	2270	2270	2400	2400
	せん断スパン比	—	5.7	3.4	4.0	3.2
軸方向 鉄 筋	種別	Ι	SD295	SD295	SD295	SD490
	軸方向鉄筋径	mm	D13	D13	D10	D13
	軸方向鉄筋間隔	mm	90	200	156.4	155.8
	軸方向鉄筋比	%	0.81	1.27*	0.20	0.86*
		%	0.65		0.37	
帯鉄筋	種別	_	SD295	SD295	SD295	SD345
	帯鉄筋径	mm	D6	D13	D6	D6
	帯鉄筋間隔	mm	200	200	75	50
	帯鉄筋有効長	mm	1800	400	1720	1870
	帯鉄筋体積比	%	0.04	0.63	0.10	0.14
コンクリート設計基準強度		N/mm ²	27	27	21	30
作用軸力 (基 部)	作用軸力	kN	_	975	_	884
	単位面積あたり	N/mm ²	_	0.69	_	0.82

*:補強部における軸方向鉄筋と巻立てコンクリートの比率を算出

図-4 軸方向鉄筋の伸び出しに伴う変位δsp

界状態3を水平力が保持できなく前の状態として整理した²⁾。図・3には、限界状態3における各供試体の損傷状態を示す。

3.2 軸方向鉄筋のフーチングからの伸び出しによる 変位の推定

図・4に示すように、橋脚柱部の軸方向鉄筋がフー チング上面から伸び出すことで、基部の回転成分に よる変位 $\mathcal{S}_{sp} (\mathcal{S}_{sp} = \mathcal{H}_{sp}h)$ が生じる。そのため、RC 巻立ての限界状態を評価するうえでは、伸び出しに 伴う変位を適切に推定する必要がある。この変位は、 軸方向鉄筋のひずみ分布を仮定し、その分布を積分 して得られる伸び出し量Sを用いて算出することが できる²⁾。実験結果からは、中立軸から引張り鉄筋 位置までの距離xを直接計測することができない。 そのため、本検討においてはRC橋脚における統計 的分析結果に基づき、断面高さDの0.8倍(x=0.8D) とした²⁾。なお、その数値については、後述のファ イバー要素解析で妥当性を確認している。

3.3 塑性ヒンジ長の推定

軸方向鉄筋のはらみ出し挙動に着目した塑性ヒンジ長については、前述のとおりRC橋脚に対して CAESARでの研究に基づいた評価方法が構築されて いる。RC巻立てを含む各種巻立て補強されたRC橋 脚に対しても、現在、CAESARで研究が進められて いる⁵⁾。RC橋脚に対する塑性ヒンジ長L_nは、式(1)

図-5 ファイバー要素解析のモデル化

を用いて算出することができるが、ここではRC巻立 てに対しても同様の方法にて算出を行った。

 $L_p = 9.5\sigma_{sv}^{-1/6}\beta_n^{-1/3}\phi' \qquad (L_p \le 0.15h) \quad \dots \quad \vec{x} \quad (1)$

ここで、 σ_{y} は軸方向鉄筋の降伏点 (N/mm²)、 β_n は帯鉄筋及びかぶりコンクリートの軸方向鉄筋 のはらみ出しに対する拘束を表すばね定数 (N/mm²)、 ϕ は軸方向鉄筋の直径 (mm) である。

No.1供試体は、実験結果における軸方向鉄筋の 損傷状態と算出値である200mmに良好な一致が確 認できた。No.2供試体は、実験終了後のはつり調 査では50mm程度の範囲で軸方向鉄筋の座屈・破断 が確認⁴⁾されたが、図・3に示す限界状態3の損傷状 態では算出値である360mm程度の区間で水平ひび 割れ及び縦ひび割れが確認された。これは、図・3の 状態まで360mm程度の区間で軸方向鉄筋がはらみ 出していたものの、その状態を超えた後、損傷位置 が下方に限定され50mm程度の範囲で鉄筋が座屈し たものと考えられる。本検討で着目している限界状 態2又は限界状態3の推定においては、図・3の損傷 状態を参照し、以降の検討における塑性ヒンジ長は 算出値を用いた。

3.4 RC巻立てが限界状態に達するときの引張鉄筋 ひずみの推定

限界状態に達するときの軸方向鉄筋の引張ひずみ は、軸方向鉄筋のはらみ出し挙動に着目し、帯鉄筋 やかぶりコンクリートに拘束される効果を踏まえた 評価方法として提案されている²⁾。これは実験結果 に基づいたファイバー要素解析と各パラメータを重 回帰分析により評価した回帰式である。

 $\varepsilon_{st} = C \cdot L_p^{0.15} \cdot \phi^{-0.15} \cdot \beta_s^{0.20} \cdot \beta_{co}^{0.22} \cdots \overrightarrow{\mathfrak{R}}$ (2)

ここで、 ϕ は軸方向鉄筋の直径 (mm)、 β_s 又は β_{co} は帯鉄筋又はかぶりコンクリートの軸方向鉄筋 のはらみ出しに対する拘束を表すばね定数 (N/mm²)である。なお、Cは限界状態2の場合 0.025、限界状態3の場合0.035である。

図・6 限界状態に相当する引張ひずみと実験結果の比較

実験においてRC巻立てが限界状態に達した時、 塑性化した軸方向鉄筋の引張ひずみを直接計測する ことは困難である。これは、降伏点以降のひずみに ついて計測が難しいためである。そこで、図-5に示 すファイバー要素解析により、実験における軸方向 鉄筋の引張ひずみを推定した。モデル化については、 コアコンクリートを帯鉄筋の拘束効果を考慮した応 力度ひずみ関係¹⁾で、軸方向鉄筋を降伏点以降の剛 性を0とするバイリニア型でモデル化した。塑性ヒ ンジ長は3.3の算出値を用いた。解析では伸び出し による変位を考慮できないため、解析結果から3.2 で算出した伸び出しによる変位を控除し、そのとき の軸方向鉄筋の引張ひずみを算出した²⁾。

図-6に式(2)より算出したひずみと実験の再現 解析より得られたひずみを示す。あわせてRC橋脚 を対象とした文献²⁾の結果も示す。本検討結果は、 No.1供試体のひずみが文献²⁾の根拠となった供試体 のひずみ領域を超えるものの、文献²⁾と概ね同様の 傾向といえる。

4. RC巻立ての塑性変形能の評価

RC巻立ての限界状態における変位を、前章にて 確認した引張ひずみ ε_{st} 及び塑性ヒンジ長 L_p をもと に式(3)より算出した。

 $\delta_{ls} = \delta_v + (\phi_{ls} - \phi_v) L_p (h - L_p/2) \cdots \overrightarrow{\mathbf{x}}$ (3)

ここで、 δ_y は降伏変位(mm)、 ϕ_y は降伏曲率 (1/mm)、 ϕ_s は限界状態2又は限界状態3に達すると きの曲率(1/mm)である。 ϕ_s は橋脚基部断面の軸 方向鉄筋位置において、引張ひずみが ε_{st} に達する か圧縮ひずみがコンクリートの限界圧縮ひずみ¹⁾に 達するかどうかで判断した。

算出した荷重変位関係と実験値を比較した結果 を図-7に示す。実験値は、正負交番載荷試験におけ る各基準変位、繰返し回数の履歴曲線を示している。 さらに、前章までに整理した限界状態や、伸び出し の影響を控除した変位を示している。あわせて、こ

図·7 算出した荷重変位関係と実験値との比較 れまでRC巻立て補強された橋脚の設計を行うにあ たって一般的に用いられている評価方法³⁾を用いて、 荷重変位関係を算出した結果も示す。算出結果は、 実験における限界状態2又は限界状態3の変位を概 ね良好に再現できた。

図-8には、計算による限界状態時の変位と実験に おける変位の比較を示す。図に示す実験の変位は、 軸方向鉄筋のフーチングからの伸び出しに伴う変位 を控除した値としており、あわせて文献²⁰の結果も 示す。No.1供試体及びNo.2供試体は、実験値と計 算値の結果に良好な一致が確認できる。文献²⁰にお ける結果と比較して、ばらつきを示す指標である変 動係数に着目すると、限界状態2及び限界状態3と もに17%程度となっている。さらに、既往の計算方 法では、変動係数が40%程度となっており、ここで 検討した評価方法により、推定精度が向上すること が確認できた。

5. おわりに

本稿は、RC巻立てを対象として軸方向鉄筋のは らみ出し挙動に着目した限界状態の評価を行うこと を目的に、実験結果よりRC巻立ての限界状態を設 定したうえで、鉄筋のフーチングからの伸び出しや

図・8 限界状態時の変位の計算値と実験値との比較 はらみ出し挙動に着目した塑性ヒンジ長の算出及び 鉄筋引張ひずみを確認し、RC巻立ての限界状態の 評価方法に基づいた変位を算出した結果を報告した。

その結果、諸元の異なる2体の実験結果を用いた のみであるが、算出した変位と実験値とを比較し、 ばらつきが小さく精度よく推定できることが確認で きた。今後は、さらに条件の異なるRC巻立てを対 象として、適用性の確認を行うとともに、鋼板や炭 素繊維等の多様な補強材料により巻立て補強された RC橋脚に対しても同様の観点で評価方法の検討を 進める予定である。

参考文献

- 1) (社)日本道路協会:道路橋示方書・同解説V耐震設 計編、2017
- 鉄筋コンクリート橋脚の地震時限界状態の評価手法 に関する研究、土研資料第4262号、2013
- 3) 既設橋の耐震補強設計に関する技術資料、国総研資 料第700号、土研資料第4244号、2012
- 4) 鬼木浩二ら:橋脚のRC巻立て補強における高強度鉄筋の適用がアンカー定着特性と補強効果に及ぼす影響、構造工学論文集、Vol.63A、pp.289~300、2017
- 5) 宮田秀太ら:巻立て補強された鉄筋コンクリート橋 脚の塑性ヒンジ長に関する解析的検討、第21回性能 に基づく橋梁等の耐震設計に関するシンポジウム講 演論文集、pp.153~160、2018

土木研究所構造物メンテナンス 研究センター橋梁構造研究 グループ 上席研究員 Michio OHSUMI

土木研究所構造物メンテナンス 研究センター橋梁構造研究 グループ 主任研究員 Mamoru SAWADA

宫田秀太

土木研究所構造物メンテナンス 研究センター橋梁構造研究 グループ 交流研究員 Shuta MIYATA