振動式コーンを用いた原位置液状化試験法に関する基礎的検討

1. はじめに

実務上、地盤の液状化強度はN値を指標として 間接的に推定される場合が多いが、その場合、人 工埋立層と自然堆積層など、堆積年代による差異 をN値から検出することは難しい¹⁾。また、より 詳細な調査法としては、地盤から乱れの少ない試 料を採取し、室内土質試験(液状化試験)を行う 方法があるが、地盤の不均質性に起因する個々の 供試体のばらつきや、試料採取時の供試体の乱れ の影響を受けやすいなど、精度確保に課題が残さ れている²⁾。こうした背景から、著者らは原位置 液状化試験法の開発に向けた取り組みを進めてお り、その一つとして考えられる振動式コーンの試 作・検証を行っているところである。

振動式コーンは、原位置の地盤に対して直接振 動を与えて液状化させることで、原位置液状化強 度を直接的に評価することを目指すものである。 これにより、原位置液状化強度を従来の手法より も簡易かつ高精度に評価できることが期待される。

本報では、振動式コーンを用いた原位置液状化 試験法の確立に向けて、室内土槽実験の結果に基 づき、振動式コーンからの周辺地盤への作用外力 について考察し、原位置液状化強度の評価方法に ついて検討を行った結果を報告する。

2. 振動式コーンの機器概要

著者らが製作した振動式コーンのプローブの全 体概要図を図・1に示す。これは、地盤への静的圧 入を想定したプローブで、プローブ先端にコーン ポイントを有している。また、プローブ内には、 地中でプローブを振動させるために振動部、振動 中の先端抵抗、間隙水圧、加速度、振動部の回転 周波数を計測するために荷重計、間隙水圧計、加 速度計、パルス計を搭載している。

振動部には偏心ウェイトを搭載し、これをプ ローブ軸周りに回転させることでプローブに水平 石村陽介・谷本俊輔・佐々木哲也

方向の振動を生じさせ、これによってプローブの 周辺地盤に繰返し荷重を直接与えるものである。 図・2に示すように、偏心ウェイトは大小の二重構 造としており、それらの交差角と回転周波数を独 立制御することで、遠心力を調整できる機構とし ている。なお、加速度計は、非回転部に設置して おり、プローブの水平1成分の加速度を測定できる。

3. 実験概要

3.1 模型地盤の概要

図・3に模型地盤の平面図を示す。幅1.3m×奥行

Basic Study on In-situ Liquefaction Test Method Using Vibro-cone

1.3m×高さ1.5mの剛土槽に層厚1.35mの模型地盤 を作製し、図-3に示す①~⑲の貫入位置で、一連 の実験を行った。使用した地盤材料は宇部珪砂6 号 (ρ_s =2.647g/cm³、 D_{50} =0.29mm、 e_{max} =1.014、 e_{min} =0.594) であり、case3:緩詰め (Dr=37%)、 case4:密詰め (Dr=77%) の2種類の模型地盤を 作製した。なお、宇部珪砂6号の室内試験による 液状化強度比は、Dr=37%で R_{L20} =0.162、 Dr=77%で R_{L20} =0.261であった。

また、模型地盤内には、図-3に示すA1~6、P1 ~6の位置において、G.L.-0.35m、0.65m、 0.95m、1.25mの深度に加速度計、間隙水圧計を 設置し、実験中の地中の加速度と間隙水圧を計測 した。

3.2 実験方法

本実験では、プローブの貫入と振動のパターン を種々組み合わせた載荷を行った。本報ではそれ らのうち、定点振動法³⁾による実験結果について 示す。これは、プローブ貫入後、一定の深度で固 定し、遠心力を漸増させながら振動させる載荷方 法である。

定点振動法による実験ケース一覧を表・1に示す。 表中のcase番号は、「模型地盤のcase - 貫入孔番 号」を示している。本実験の定点振動法における プローブの先端深度は、case4-18ではG.L.-1.3m のみ、その他のケースでは同一の貫入孔でG.L.-0.7m、1.0m、1.3mの3深度である。回転周波数 の範囲は表・1に示すとおりであり、case3-2、3-8 は5秒ごとに約20Hzずつ、それ以外のケースでは 2秒ごとに約10Hzずつ上昇させた。

3.3 計測データの処理

データ収録は10kHzのサンプリング周波数で 行った。プローブ内に設置した加速度計による計 測波形を2回積分することで、変位を算出した。 パルス計による計測値と、加速度波形から算出さ れる瞬間周波数を併用することで、回転周波数を 求めた。また、偏心ウェイトの回転周波数と交差 角に基づいて、偏心ウェイトの遠心力を算出した。

先端抵抗、間隙水圧、回転周波数、遠心力については0.1sごとの平均値、加速度及び変位については0.1sごとの最大・最小値を抽出してデータ整理を行った。

また、地盤内に設置した加速度計、間隙水圧計 の計測結果については、加速度は0.1sごとの絶対 値の最大値、間隙水圧は0.1sごとの平均値を抽出 してデータ整理を行った。

4. 実験結果および考察

4.1 プローブと周辺地盤の挙動

代表的なケースとしてcase3-2(緩い砂)を対 象に、振動式コーンによる計測データの例を図-4 に示す。いずれの深度においても、遠心力を漸増 させていくと、あるタイミングで先端抵抗が低下

表・1 実験ケース一覧 (上: case3、下: case4)

case 番号	貫入 位置	回転周波数 (Hz)	ウェイト 交差角 ([°])	遠心力 (kN)
3-2	2	20~150Hz	0	0.013~0.731kN
3-8	8	20~200Hz	180	0.003~0.274kN
3-10	10	20~150Hz	0	0.013~0.731kN
3-12	(12)	20~200Hz	180	0.003~0.274kN

case 番号	貫入 位置	回転周波数 (Hz)	ウェイト 交差角 ([°])	遠心力 (kN)
4-2	2	20~200Hz	0	0.013~1.299kN
4-3	3	20~200Hz	180	0.003~0.274kN
4-8	8	20~200Hz	90	0.009~0.939kN
4-9	9	20~200Hz	45	0.012~1.205kN
4-10	10	20~200Hz	135	0.006~0.558kN
4-11	1	20~200Hz	0	0.013~1.299kN
4-12	(12)	20~200Hz	180	0.003~0.274kN
4-16	16	GL-0.7m; 20~110Hz GL-1.0m; 20~120Hz GL-1.3m; 20~160Hz	0	GL-0.7m;0.013~0.393kN GL-1.0m;0.013~0.468kN GL-1.3m;0.013~0.831kN
4-17	1	GL-0.7m; 20~100Hz GL-1.0m; 20~120Hz GL-1.3m; 20~160Hz	180	GL-0.7m; 0.003~0.068kN GL-1.0m; 0.003~0.099kN GL-1.3m; 0.003~0.175kN
4-18	18	20~170Hz	0	0.013~0.938kN
4-19	(19)	20~200Hz	0	0.013~1.299kN

しはじめ、最終的にほぼ零となることが確認され た。また、先端抵抗が零となるタイミングで間隙 水圧がわずかに反応し、加速度・変位振幅が急激 に大きくなっていることが確認された。

case3-2の貫入孔直近の地盤(A1、P1)におけ る加速度、過剰間隙水圧比を図-5に示す。先端抵 抗が低下し始めると、振動部付近の加速度がわず かに上昇し、過剰間隙水圧も反応していることが 確認できる。

また、先端抵抗がほぼ零となったタイミングで は、プローブの先端付近において加速度、過剰間 隙水圧比ともにピークを示している。

case3-2では、過剰間隙水圧比は最大でも0.3程 度と小さい値を示しているが、振動中に地表面に 水が滲出してくる様子が確認されたこと、プロー ブ周辺地盤への振動の影響範囲がプローブのごく 近傍に限定的であること4)を踏まえると、先端抵 抗が零となるタイミングにおいて、プローブの先 端近傍の地盤の間隙水圧上昇による剛性低下が生 じたと考えられる。

4.2 プローブから周辺地盤への作用外力

プローブから周辺地盤への作用外力について考 える。図-6は、室内土槽実験における偏心ウェイ トの遠心力とプローブ慣性力の例である。ここで、 プローブ慣性力は、プローブに設置した加速度計 の計測値にプローブ(図-1の全体)の質量を乗じ て算出した波形の振幅包絡線を示したものである。 図・6より、両者の値のオーダーは同程度であるも のの、経時的な増減傾向は必ずしも一致しないこ とが分かる。この現象は、次のように解釈するこ とができる。

プローブの振動を、偏心ウェイトの遠心力(入 力動)に対する応答であると捉えると、その周波 数応答特性(固有振動特性)は、プローブの質量 に起因する慣性力と、周辺地盤からの反力や接続

図-6 (上: case3-10、下: case4-10)

したロッドからの曲げ抵抗等の復元力によって決 定付けられる。したがって、偏心ウェイトの遠心 力の入力に対し、その応答であるプローブの慣性 力は必ずしも一致せず、周辺地盤の剛性等の状態 に応じた振幅の増減や、作用方向のずれ(位相差) が生じる。このため、周辺地盤への作用外力につ いて考える場合は、プローブ内部で発生する遠心 力よりも、プローブ慣性力に着目する必要がある と考えられる。

なお、偏心ウェイトの遠心力を一定に保持する ことができたとしても、周辺地盤の剛性変化等の 影響により、プローブ慣性力を一定に保持するこ とは難しい。したがって、原位置液状化試験法と しての精度確保の観点からは、周辺地盤への振動 外力を一定とみなすのではなく、変動する振動外 カを計測することと、それに基づいた原位置液状 化強度の評価方法を構築することが望ましいと言 える。

4.3 原位置液状化強度の評価方法に関する検討

遠心力を漸増させた室内土槽実験の結果から、 先端抵抗が零となったタイミングで地盤の剛性低 下が生じたと考えられ、その時点にプローブから 周辺地盤に作用している力が液状化強度の評価指 標になり得ると考えられる。そこで、先端抵抗が 零となった時点のプローブ慣性力に着目し、原位 置液状化強度の評価方法について検討する。

先端抵抗が零となった時点のプローブ慣性力の 深度方向分布を図・7に示す。凡例は「模型地盤の case・偏心ウェイトの交差角度」を示している。

先端抵抗が零となった時点のプローブ慣性力は、 偏心ウェイトの交差角度にはあまり依存せず、模 型地盤の相対密度が大きいほど、また、深度が深 くなるほど大きな値を示す傾向にある。これは、 均質に作製された模型地盤における液状化強度 (液状化発生に必要な繰返しせん断応力振幅)の 拘束圧依存性を捉えたものと考えられる。

これらの結果から、振動式コーンを用いた原位 置液状化強度の評価にあたっては、先端抵抗が零 となった時点のプローブ慣性力に着目する方法が 一案として考えられる。

5. まとめ

本報では、原位置液状化試験法として著者らが 開発している振動式コーンについて、プローブか ら周辺地盤への作用外力に関する考察、原位置液 状化強度の評価方法について検討した結果を示し た。得られた知見は以下のとおりである。

 プローブから周辺地盤への作用外力としては、 偏心ウェイトの遠心力よりもプローブ慣性力 がより直接的な指標となる。 振動式コーンを用いた原位置液状化強度の評価にあたっては、先端抵抗が零となった時点のプローブ慣性力に着目する方法が一案として考えられる。

これらは、振動式 コーンによる一連の載 荷方法~データ解析方 法を原位置液状化試験 法として組み立てる上 での重要な知見であ る。今後は、実地盤を 対象とした検証実験を 行い、室内試験による 液状化試験データと対

比することで、振動式コーンを用いた原位置液状 化試験法の確立および実用化を目指していきたい。

参考文献

- 1) 谷本俊輔、佐々木哲也、石原雅規:液状化判定法 の課題-年代効果の問題を中心に-、地盤工学会 誌、Vol.64、No.8、pp.18~21、2016
- 2) 佐々木哲也、石原雅規、林宏親、江川拓也、谷本 俊輔、鷲見浩司、川口剛:細粒分を含む砂の液状 化強度の評価法に関する再検討、土木研究所資料、 第4352号、2016.3
- 3) 石村陽介、谷本俊輔、佐々木哲也:振動式コーン を用いた定点振動の適用性に関する室内土槽実験、 第61回地盤工学シンポジウム発表論文集、 2018.12
- 4) 谷本俊輔、石村陽介、佐々木哲也:原位置液状化試 験における地中振動体と周辺地盤の挙動に関する考 察、第54回地盤工学研究発表会、2019.7(投稿中)

研究当時 土木研究所地質・地 盤研究グループ土質・振動チー ム 交流研究員、現 八千代エ ンジニヤリング(株) Yosuke ISHIMURA 谷本俊輔

土木研究所地質・地盤研究グ ループ土質・振動チーム 主任 研究員 Shunsuke TANIMOTO

佐々木哲也

土木研究所地質・地盤研究グ ループ土質・振動チーム 上席 研究員 Tetsuya SASAKI