特集報文:安全・安心を支える地質・地盤分野の技術

浅層改良盤の変状確認のための遠心力載荷模型実験

近藤益央·宮武裕昭

1. はじめに

盛土等の軟弱地盤対策においてコスト縮減を目 的として、図・1に示すように深層混合処理工法と 浅層混合処理工法を組み合わせて用いる場合があ る。深層混合処理工法と浅層混合処理工法を組み 合わせて用いる工法は、盛土荷重を浅層改良盤 で受け、その荷重のほとんどを深層改良杭に分担 させる。そのため、深層混合改良率の低改良率化 によるコスト縮減のみならず、深層改良杭と未改 良地盤との沈下量の差により発生する不陸抑制で も大きな効果が期待できる。しかし、浅層改良体 の厚さを薄くしたり、深層改良杭領域の改良率を 低くしたりして組み合わせると、浅層改良盤の下 部に引張り応力が発生したり、深層改良杭が浅層 改良盤を突き抜ける押し抜きせん断(以下「パン チング」という。)が発生したりする。

本報告では浅層改良盤に発生する変状を確認す るため、遠心力載荷模型実験を実施したので実験 概要並びに損傷状況について紹介する。

2. 試験装置及び実験模型の概要

2.1 遠心力載荷試験装置

遠心力載荷実験装置は、遠心加速度を利用して 小型縮小模型に実規模相当の自重応力を発生させ、 模型実験を行う装置である。今回の実験では、土 木研究所所有の遠心力載荷装置を用いて実施した。 本装置はビーム型であり、2本のビームの先端に 容器搭載面(プラットフォーム)が取り付けられて いる。プラットフォームの逆サイドにはカウン ターウェイトが設置され、ビーム回転中の装置の バランスを保つようになっている。プラット フォームにおける回転半径は3.5mであり、最大 140Gの遠心加速度をプラットフォームに搭載し た模型容器に与えることが出来る。今回の実験で は、50Gの遠心加速度場において行った。遠心力 載荷装置の仕様を表-1に、全体の構造を写真-1に

Centrifugal Model Test to Investigate Possible Deformations in Shallow Improvement Layers

図・1 深層混合処理と浅層混合処理の組み合わせ 表・1 遠心力載荷試験装置の基本仕様

項目	仕様
最大載荷遠心力	140 G
有効回転半径	3.5m
最大掲載重量	1t
プラットフォーム寸法	$W1.2m \times L1.2m \times H1.0m$
計測システム	100ch

写真-1 使用した遠心力載荷試験装置 表-2 実験条件

実験ケース	深層混合改良率	浅層改良体強度
ケース1	18.7%	300kN/m ²
ケース2	18.7%	200kN/m ²
ケース3	8.7%	1,000kN/m ²
ケース4	8.7%	300kN/m ²

示す。

2.2 実験ケース及び実験模型

遠心力載荷模型実験は、4ケースを実施した。 今回の実験では、浅層改良盤厚さは一般的に多く 採用されている層厚1mとし、深層混合改良率は 低改良率の18.7%と超低改良率の8.7%とした。こ

図-2 実験模型概要(ケース1及び2)

れは、参考文献2)で実施した動的特性に関する遠 心力載荷模型実験の模型諸元と合わせている。ま た、浅層改良盤の強度設定は、参考文献4)を用い てパンチングに対する照査により決定した。すな わち、ケース1及び3はパンチングに対する照査 を満足し、ケース2及び4はパンチングに対する 照査を満足しない条件とした。各ケースの深層混 合改良率、浅層改良体強度を表-2 に、ケース1及 び2の模型断面図を図-2、ケース3及び4の模型断 面図を図-3に示す。

なお、共通の実験条件を表-3 に示す。

2.2.1 事前配合試験

目標添加率を決定することを目的として、ラン ダムに設定した添加率で作成した供試体で一軸圧 縮試験を実施した。事前配合試験に用いる供試体 は、地盤工学会基準「JGS 0821-2009 安定処理 土の締固めをしない供試体作成方法」に準拠し、 直径5cm、高さ10cmで作成した。養生期間は実 験と同じ5日間とした。供試体から水分が蒸発し ないようモールドを密封材で被覆し、温度(20 ±3) ℃で静置し、気中養生した。作成した供試 体の一軸圧縮強度試験は、地盤工学会基準「JIS A 1216 土の一軸圧縮試験方法」に準拠し、1試 験あたり3供試体で実施した。図-4に事前配合試 験結果を示す。セメント添加率と一軸圧縮強度qu との関係は概ね直線的な比例関係にあることがわ かる。図-4の関係から一軸圧縮強度 quが 300kN/m²、1,000kN/m²になる添加率を決定し、 その添加率で作成した供試体の一軸圧縮強度 quが 目標強度に対して±10%の範囲内であるか確認す

図-3 実験模型概要(ケース3及び4)

表・3	実験条件並びに使用材料
-----	-------------

項目	実験条件
模型縮尺	1/50
載荷遠心力	50G
盛土作成条件	サンドホッパーによる投下
盛土材	ジルコンサンド
軟弱地盤	カオリンクレイ ASP-400P
改良材(添加材)	早強ポルトランドセメント

図·4 事前配合試驗結果

図-5 改良体の確認試験結果

る目的で確認試験を実施した。確認試験の結果を 図-5に示す。事前配合試験で実施した配合率と大 表-4 実験結果一覧

きく異なった目標一軸圧縮強度 q_u が1,000kN/m² の場合も、目標一軸圧縮強度 q_u に対して試験結果 は1,009~1,035kN/m²であった。

2.2.2 実験地盤模型作成

地盤模型に使用するカオリンクレイを液性限界 (WL=51.6%)の約1.5倍(w=77.4%)になるよう に加水し、ソイルミキサーで十分に撹拌し、24 時間程度経過したものを用いた。この撹拌から 24時間程度経過したカオリンクレイを3回に分け て投入し、投入する毎にタッピングを行い、空気 の除去を行った。土槽を地盤挙動実験設備にセッ トし、変位計、間隙水圧計を計測装置に接続した 後に、50Gまで加速し、50G場で遠心圧密させる。 急激に加速させると地盤が過圧密になるため、 50Gまでの遠心力増加は10Gずつ増加させた。土 槽を遠心力載荷試験装置から下ろし、表面水を撤 去して、地盤を所定の高さ(地盤高さ16cm)に なるように切削・整形する。ドリル(外径 o 20mm)を挿入し、軟弱地盤と基盤の砂層を取り 除き、管(外径 φ 20mm) に、目標強度となるよ う配合したセメントスラリーを充填し、掘削され た深層改良体部に挿入する。押出し棒(外径↓ 15mm) でセメントスラリーを押し出しながら、

管を引き抜くことで掘削孔にセメントスラリーを 注入した。その後、浅層改良体部に目標強度とな るよう配合したセメントスラリーを打設した。

3. 遠心力載荷模型実験

盛土作成用のサンドホッパーを土槽に設置して、 1G/分のスピード50Gまで増加させ、間隙水圧が 安定するまで10分程度待ってから2.2.2の方法で 作成した模型地盤にサンドホッパーから盛土材 (ジリコンサンド)を落下させて盛土を作成した。 遠心力載荷模型実験では、あらかじめ型枠内で締 め固めた盛土模型を凍結させ、土槽内に設置した 後に室温でゆっくりと融解させた後に遠心力を載 荷する方法を用いることが多い。しかし、前述し た方法では完成した盛土を浅層改良体上に遠心力 載荷前から設置しているため、盛土構築過程にお ける浅層改良盤の変状を確認することが出来ない。 そのため、きれいな台形型の盛土模型は作成でき ないが、サンドホッパーによる落下方式を採用し た。

3.1 浅層改良盤の破壊状況

表-4に示したようにケース3では当初の計画通 りパンチングは確認されず、曲げ破壊のみが確認 された。浅層改良盤では深層改良杭間にあたる位 置で浅層改良盤下面からのクラック(表・4のク ラック①)が確認されるほか、深層改良杭上にあ たる位置では浅層改良盤上面からのクラック(表-4のクラック②)が確認された。今回の実験ではサ ンドホッパーによる盛土作成の方法としたが、ジ リコンサンド投下時の遠心力や回転風等の影響に より浅層改良盤幅より法尻幅の方が大きくなった ことや深層改良杭が浅層改良盤辺より内側に位置 していたことにより、片持ち梁状態の浅層改良盤 端部に盛土荷重が作用して、上面からのクラック が発生したと考えられる。このような変状は表・4 に示したようにケース1並びに2においても同様 の現象が確認されている。

ケース2はパンチングによる照査を満足してい ないことから深層改良杭が浅層改良盤を押し抜く パンチングが発生すると考えていたが、実験では パンチングは発生しなかった。ケース4はケース 2同様にパンチングに対する照査を満足していな かったので、表-4に示したとおり深層改良杭の位 置するところに円弧を描くようにクラックが発生 しているのがわかる。

3.2 深層改良杭の破損状況

表・4に示すように深層改良杭の一軸圧縮強度は ケース4を除けば750kN/m²前後で、一般的に深 層混合処理工法で用いられる改良強度となってい た。盛土高さが全ケース共通であることから深層 混合改良率が低いケース3及び4の方がケース1及 び2と比べて、深層改良杭に作用する鉛直荷重は 大きくなるが、今回の実験では深層改良杭の損傷 小は全てのケースで確認できなかった。

4. まとめ

今回の実験では、下記のような知見が得られた。

- パンチングによる破壊を想定したケース2と 4ではケース4のみがパンチングによる破壊 を確認した。ケース2でパンチングが発生し なかったのは未改良地盤の荷重分担が想定以 上に大きいことが考えられる。
- コスト縮減を目的として深層改良杭領域の改 良率を極端に低くしたケース3及び4では浅 層改良盤の下部から曲げ破壊によるクラック が発生した。
 - 著者らのこれまでの研究(参考文献3))ではカ

オリンクレイの引張り強度と一軸圧縮強度との関係は、引張り強度は一軸圧縮強度の0.26倍であった。この場合、今回の実験のように浅層改良盤厚 1mで曲げ破壊を発生させないためは、高強度の 改良体が必要となり、改良土としては難しい。そ のため、浅層改良盤下部にジオテキスタイル等の 引張り補強材を挿入したり、浅層改良盤厚を2m 以上と厚くしたりすることで、曲げ破壊に対する 対処する必要があると考えられる。今回の実験で 想定した超低改良率の深層混合処理杭と浅層改良 体を組み合わせは、現在、研究をすすめている特 殊な設定条件であるため、現在多く用いられてい る改良率の範囲では設計上問題になることはない と考えられる。

今回の実験により得られた知見から、今後は盛 土の法尻位置と浅層改良盤の位置関係、さらには 深層改良杭の配置によって発生する浅層改良盤上 部からの曲げ破壊や深層改良杭間で発生する浅層 改良盤下部からの曲げ破壊に対する照査方法の検 討を進める必要がある。

参考文献

- 宇梶 伸、宮武裕昭、近藤益央、井上玄己、平林 学:浅層改良盤の曲げ耐力の評価に関する一考察、 第71回年次学術講演会講演概要集、(公社)土木学会、 2016.9
- 橋本 聖、近藤益央、林 宏親、青木卓也、山梨高 裕、宮武裕昭:複合型地盤改良の動的特性に関する 遠心力載荷模型実験、第13 回地盤改良シンポジウ ム講演概要集、(公社)日本材料学会、2018.10
- 3) 近藤益央、宮武裕昭、宮下千花、持田文弘、川原 孝洋:固化材改良した土の一軸引張り強度に関す る実験的検討、第13 回地盤改良シンポジウム講 演概要集、(公社)日本材料学会、2018.10
- (社)セメント協会:セメント系固化材による地 盤改良マニュアル(第4版)、2012.10
- 5) ALiCC工法研究会: ALiCC工法マニュアル、鹿島 出版会、2015.4

近藤益央

エネ研究所地員・地盤 研究グループ施工技術 チーム 総括主任研究員 Masuo KONDOH

土木研究所地質・地盤 研究グループ施工技術 チーム 上席研究員 Hiroaki MIYATAKE