地震の影響を受けた支承の残存性能の検証と 損傷痕に基づく橋の挙動の推定

中尾尚史・江口康平・二宮智大・大住道生

1. はじめに

2016年熊本地震では、地震動や地盤変状によ り橋の機能が喪失する被害を受けた。このような 事態を避けるためには、橋の損傷メカニズムを検 証し、得られた知見を設計基準等に反映すること が重要である。

橋の損傷に至る挙動を明らかにする方法は幾つ かあるが、方法の1つとして応答解析からアプ ローチする方法がある。このアプローチは、橋の 構造条件や地震動等の作用条件を設定することで、 時刻歴の橋の挙動や各部材の応力や変位等を明ら かにすることができる。ただし、地震動の特性や 部材の剛性など橋の物性については仮定すること になるため、解析により得られた結果と実際の挙 動は異なる可能性がある。

別の方法として、損傷痕からアプローチする方 法がある。このアプローチは、損傷痕や部材の損 傷状態から得られた事実を積み重ねることで、橋 の挙動や損傷箇所における力の作用状態を明らか にすることができる。ただし、時刻歴の挙動や部 材に生じた応力は一定の範囲までしかわからない。

土木研究所では、熊本地震により被害を受けた 橋の調査を行っており¹⁾、これらを踏まえて本研 究では後者を採用し、俵山大橋を対象として、橋 に残された損傷痕や支承の損傷状態から損傷メカ ニズムを推定することにより支承に作用した力を 推定した。さらに、撤去された支承を用いて載荷 実験を行い、地震の影響を受けた支承の残存性能 を検証し、これらに基づき橋の挙動を推定した。

2. 俵山大橋の被害分析

2.1 俵山大橋の概要

俵山大橋は、平成13年に竣工した阿蘇郡西原 村に位置する橋梁である。本橋は橋長140mの鋼 3径間連続非合成鈑桁橋であり、平成8年道路橋 示方書に基づいて設計されていた(図-1)。支承形 式は地震時水平力分散型ゴム支承、下部構造形式 は逆T式橋台及び張出し式橋脚、基礎形式は深礎 基礎であった。

2.2 俵山大橋の損傷状態

現地調査の結果、俵山大橋は橋台及び橋脚が全体的に沈下及び終点側に変位した(図・2)。また、 A1橋台のパラペットと桁が衝突、A1-P1間の主桁の一部が座屈した。A2橋台では、桁がパラペットに衝突し、パラペットが約600mm背面土側に押し込まれた。A2橋台の損傷状態を見ると、写真・1に示すように、下フランジが衝突した痕跡が見られた。また、G2桁以外の箇所はパラペットに削られた痕跡が見られた。このような損傷により路面に段差が発生し、橋の機能が喪失した。なお、現地調査結果の詳細については文献2)を参照されたい。

2.3 支承の損傷状態

写真-2に俵山大橋に使用されていた支承の損傷 状態を示す。ただし、撮影時期は同じではない。 図中には被災直後の支承の水平変形量も示した。 なお、P2橋脚及びA2橋台の支承については、下 沓位置を基準にした破断後のゴム支承及び上沓の 水平変位量を示した。

Verification of Residual Capacity of Bearing Supports and Inference of Bridge Behavior Based on Damage Traces due to Earthquake

写真-2 各支承の損傷状態

A1橋台の支承を見ると、図・2に示したように A1橋台が終点側に変位したため、橋軸方向につ いては起点側に225mmから250mm、橋軸直角方 向については終点側に向かって右側に5mmから 28mm変形していた。P1橋脚の支承を見ると、 橋軸方向については終点側に110mmから145mm、 橋軸直角方向については終点側に向かって左側に 105mmから117mm変形していた。なお、A1橋台 及びP1橋脚の支承は、ゴム支承本体に変形が生 じていたが、破断していなかった。P2橋脚及び A2橋台に設置された支承は写真・2に示すように、 破断位置は異なるが全て取付けボルトで破断して いた。また、ゴム支承本体には変形が見られたが、 ゴム支承本体は破断していなかった。 本研究では、撤去された支承の外観調査を行った。ここではゴム支承本体上下面を調査した結果を図・3に示す。ただし、A2橋台のG3桁とG4桁の支承については、下面の調査を行っていない。なお、著者らグループでは他の箇所の調査も行っている。調査結果は文献3)を参照されたい。

A1橋台やP1橋脚のゴム支承は図に示すように、 一部取付けボルトの損傷やせん断キーを取り付け る穴(以下、せん断キー穴と呼称。せん断キーは、 ゴム支承本体設置時の位置合わせに用いる部品。 当時はせん断力を受け持つように設計されてい た)の変形が見られた。一方、P2橋脚及びA2橋台 のゴム支承については、取付けボルトの損傷やせ ん断キー穴の変形が多く見られた。

写真・3 A2橋台G4支承におけるゴム支承本体断面の損傷状態(ゴム支承本体中央を切断)

これら取付けボルトの損傷状態を見ると、同一 面における取付けボルトの損傷は、主に破断であ る。しかし、P2橋脚のG3桁の支承やA2橋台の G3桁やG4桁の支承のように、同一面で取付けボ ルトの抜けと破断が混在する損傷状態も見られた。

このような損傷が生じているゴム支承を詳細に 調査するため、ゴム支承本体の外観寸法及び断面 の損傷状態を調べた。図-4はゴム支承本体厚の設 計値(229mm)に対するゴム厚の変化量を計測し たものである。ただし、出荷時における製品検査 の記録は確認できなかった。計測した結果、起点 側及び終点側に面している位置は縮んでいた。ま た、終点側の変形量は、起点側に比べて2倍以上 大きかった。写真・3はゴム支承本体の断面状態で ある。写真より、せん断キー穴の終点側が変形し ている。また、内部鋼板の上部や上鋼板もせん断 キー穴付近で曲げ変形している。したがって、少 なくともゴム支承には内部鋼板が残留変形する以 上の曲げによる力が作用していたと考えられる。

なお、現地調査ではゴム支承には損傷が見られ

図・4 ゴム支承本体の外観寸法(鉛直方向、A2G4支承)

なくても、撤去して詳細に調査すると、ボルトや 内部鋼板等に損傷が生じている可能性があること がわかった。

2.4 ゴム支承の材料特性試験

本研究では、ゴム支承の材料特性の変化を調べ るため、A2橋台のG3桁とG4桁支承の材料試験を 行った。材料試験結果を表・1に示す。支承出荷時 における材料試験の記録は確認できなかったため、 当時の基準(平成3年道路橋支承便覧)を示した。

材料試験の結果、伸びは基準値を下回った。一般的にせん断弾性係数が0.8N/mm²のゴムについては、実測伸びは600%を超えるのに対して

	基準(当時)	A2G3支承	A2G4支承
デュロメータ硬さ(HAD)	50±5	52	56
伸び	550%≦	510%	490%
引張強さ	14.7N/mm ²	24.4N/mm ²	23.5N/mm ²
静的せん新弾性係数	0.78 ± 0.08 N/mm ²	0.90N/mm^2	0.97N/mm^2

表-1 材料試験の結果

500%前後であったことから、伸びが低下した。 一方、硬さについてはG4桁の支承で基準値を上 回った。その結果、ゴム支承の静的せん断弾性係 数が大きくなっており、橋脚に作用する力が大き くなっていた可能性がある。ただし、引張強さは 確保されていることから、ゴムの破断に関しては 危険な状態になっておらず、また橋脚に設計上想 定している損傷状態を超えてはいなかった。

載荷実験によるゴム支承損傷原因の検討

3.1 実験概要

前章では、ゴム支承の損傷状態と材料特性の変 化を把握するために、外観調査及び材料試験を 行った。本章では写真・3に示すようなゴム支承の 損傷原因やゴム支承の残存性能を検討するために、 撤去されたゴム支承を用いて載荷実験を行った。 本実験ではA1橋台のG3桁の支承を用いた。なお、 撤去後にこの支承を調べた結果、ゴム支承本体は 橋軸方向に5mm、橋軸直角方向に1mm残留変形 していたが、取付けボルトのボルト穴やゴム支承 本体には損傷は見られなかった。

写真・4に実験装置のセットアップ状況を示す。 本実験では、2.1で述べた地震や地盤変状による A2橋台部の桁衝突を再現するために、鉛直方向 に載荷した後で水平方向に載荷した。ここで鉛直 力は、図・2に示したように、A2橋台の沈下量が P2橋脚の沈下量よりも大きかったことから、ゴ ム支承には負反力が作用したことも想定して引張 力を作用させた。また、載荷治具が傾かないよう に、左側のジャッキにより載荷治具が水平になる ように調節した。なお、実験方法等の詳細につい ては、文献4)を参照されたい。

3.2 実験結果

本研究ではゴム支承の残存性能を把握するため、 事前に予備載荷を行った(図-5)4)。予備載荷の結 果、レベル2地震動の設計変位における有効設計 変位(±163.5mm)まで安定した荷重履歴関係を示 している。このゴム支承は製品完成時の性能試験 のデータがないため、出荷時に対する剛性変化量

を判断できない。そのため、当時の設計値(基準 ±10%:平成3年道路橋支承便覧)と比較した。そ の結果、せん断剛性は設計値よりも大きい結果と なり、材料試験の結果と整合した。

図・6は載荷位置における水平変位と載荷荷重の 関係を示したものである。図に示すように、桁遊 間長である250mm(ゴム支承のせん断ひずみ 123%に相当)に達しても、ゴム支承は損傷しな かった。したがって、桁衝突時にはゴム支承は損 傷していなかったと考えられる。設計当時の最大 設計変位(平成8年道路橋示方書)は233.6mmだっ たことから、設計最大変位以上の変位が生じても 破断しなかったといえる。なお、水平変位が 360mm程度(ゴム支承のせん断ひずみ176%に相 当)に達した時点で、載荷治具が損傷したため実 験は終了した。

図-7は上沓及び下沓とゴム支承本体間の開き量 を示したものである。図より、桁遊間長である 250mm以降はB部とC部の開きが大きくなってい る。また、写真-5に示した載荷中におけるゴム支 承の状態を見ても、B部及びC部に開きが見られ る。したがって、B部及びC部の取付けボルトに は引張力が作用していたと考えられる。なお、本 実験では開きの相対変位を計測しているため、ゴ ムが圧縮変形するA部及びD部については、開き量 は負値になっている。

本実験では、上沓部のせん断キー上部にひずみ ゲージを貼り付けて、せん断キーのひずみを計測 した(図-8)。図より、水平変位50mm以降はせん 断キーに圧縮ひずみが生じている。そのため、せ ん断キーにも力が作用していたと考えられる。こ こで計測したひずみから、水平変位250mmにお

けるせん断キーと取付けボルトの水平荷重の分担 率を計算した⁴⁾。その結果、せん断キーの分担率 は約78%であり、取付けボルトには22%程度しか 水平力が作用していなかったと考えられる。

4. 損傷痕から推定する橋と支承の挙動

4.1 橋の挙動

本章では外観調査及び載荷実験の結果を基に、 橋の挙動を推定する。写真-1に示したA2橋台の 損傷痕から、橋軸直角方向のずれは小さく、また 鉛直方向のずれも小さいことが分かる。このこと から、桁がパラペットに衝突したときには、桁は まだ支承上に乗っていたと推定できる。

またG2桁以外は、下フランジが衝突した痕よ り下側のコンクリートが削り取られたようになっ ている。このことから桁がパラペットに衝突した 状態のままずり落ちたことが推定できる。実際、 G1桁とG2桁の支承は桁側にゴム支承がついてい たが、G1桁のゴム支承は橋座から逸脱していた ため、G2桁だけが支承破断後も支承高さ分だけ 保持されており、パラペットの損傷痕と合致する。

さらに、A1橋台とP1橋脚の支承は残存してい たので、仮に地盤変位がなければ、ゴム支承の復 元力により桁はA2パラペットから離れるはずで ある。しかし、実際には衝突したままずり落ちて いた。そのため、ゴム支承には復元力は働いてい なかったと考えられる。

したがって、図・9に示すように地盤変状により 桁がA2橋台に衝突して、パラペットを押し込ん だと推定できる。また、図・6で示したゴム支承の 載荷実験の結果より、桁がパラペットに衝突する までは破断せず、押し込んでいる途中でゴム支承

が破断したと推定できる。なお、他の部材の挙動 については、文献2)を参照されたい。

4.2 支承の挙動

写真-3に示した取付けボルトの損傷原因は、外 観調査や載荷実験の結果から以下のように推定で きる。図-7や写真-5に示すように、ゴム支承が水 平方向に変位することにより、ゴム支承本体と上 下沓間(写真-5に示したB部とC部)に開きが見られ たことから、この位置の取付けボルトには引張力 が作用したと考えられる。また、せん断キーが水 平力を分担していたことから(図-8)、B部とC部の 取付けボルトは破断しないと考えられる。した がって、この箇所の取付けボルトは抜け出すと推 定できる。実際に図-3に示したA2側の取付けボ ルトの抜け出しと合致する。

なお、せん断キーとせん断キー穴の間には若干 の隙間があるため、取付けボルトが抜け出したあ と、せん断キー穴内でせん断キーが回転したと考 えられる。実際に写真-3や図-4に示したせん断 キー穴の変形や内部鋼板の変形、ゴム支承本体の 残留変形と合致する。

5. まとめ

本研究は、地震により機能喪失した俵山大橋に 残された損傷痕や撤去されたゴム支承から、橋の 挙動を検討した。本研究より得られた知見は以下 の通りである。

① ゴム材の材料試験では経年により伸びや硬さ 等が当時の基準値を満たさなかったが、引張 強さは確保されていた。またゴム支承の載荷 実験より、せん断剛性は設計値を上回ってお り、かつ設計当時の最大設計変位に達しても 損傷しなかった。このことから、設計地震動 に対しゴム支承本体が破断に至らない安全性 は確保していた。

- 現地調査で、ゴム支承本体に損傷が確認され なくても、取付けボルト等が損傷している可 能性があることがわかった。一方で、設計変 位までの応答では取付けボルトの損傷はな かったので、ゴム支承の設計変位を超える応 答が生じた場合には、ボルト等の確認が必要 であると考えられる。
- ③ 載荷実験やA2橋台の損傷痕より、地震動だ けでなく、地震動に加えて地盤変状が生じた ことでゴム支承(取付け部を含む)が損傷した ことが確認された。

以上より、橋に残された損傷痕やゴム支承の損 傷状況から橋の挙動を推定することができた。今 後は、損傷痕や支承の損傷状況から橋の挙動や支 承の残存性能を推定する方法を提案したいと考え ている。なお、本報文で分析の対象とした俵山大 橋を含む俵山トンネルルートは、先日全線開通し た(本誌「ニュース」を参照)。

謝辞

本報文の執筆にあたり、九州地方整備局熊本復 興事務所より撤去されたゴム支承及び調査結果を ご提供頂いた。ここに謝意を表する。

参考文献

- 1) 平成28年(2016年)熊本地震土木施設被害調査報告、 国土技術政策総合研究所資料No.967/土木研究所資 料No.4359、2017
- 大住道生、星隈順一:熊本地震により被害を受け た道路橋の損傷痕に基づく要因分析:性能に基づ く橋梁等の耐震設計に関するシンポジウム講演論 文集、pp.121~128、2017
- 3) 江口康平、余野智哉、中尾尚史、大住道生:熊本 地震後のゴム支承の損傷状態から推定する地震時 挙動、第22回橋梁等の耐震設計シンポジウム講演 論文集、pp.5~12、2019
- 二宫智大、余野智哉、中尾尚史、大住道生:地震 4) の被害を受けた支承の損傷原因に関する実験的検 討、第22回橋梁等の耐震設計シンポジウム講演論 文集、pp.13~20、2019

中尾尚史

土木研究所構造物メンテナ ンス研究センター橋梁構造 研究グループ、専門研究 員、博士(工学) Dr. Hisashi NAKAO

土木研究所構造物メンテナン ス研究センター橋梁構造研究 グループ、研究員、博士(工 学) Dr. Kohei EGUCHI

土木研究所構造物メンテナン ス研究センター橋梁構造研究 グループ、研究員 Tomohiro NINOMIYA

土木研究所構造物メンテナン ス研究センター橋梁構造研究 上席研究員 グループ Michio OHSUMI