報文

洪積粘性土中のシールドトンネルに作用する 荷重に関する一考察

石村利明*真下英人**角湯克典

1. はじめに

都市交通の効率化、渋滞緩和対策の一つとして、 今後、大都市圏における大深度地下での道路トン ネル建設が見込まれている。しかし、大深度下に おけるシールドトンネルの覆工設計においては、 作用土圧に関する現場計測データが少なく、設計 荷重などの設定方法が確立されていない。また、 大深度下では、トンネルに作用する荷重が土圧よ りも水圧が主となり、軸力が卓越するため、従来 の土水圧を対象にした設計ではセグメントが薄肉 になる傾向がある。一方で、ジャッキ推力や裏込 め注入などの影響が大きくなるため、セグメント の設計にあたってはこうした施工時荷重の影響の 程度も把握しておく必要がある。

今後、大深度地下に建設されるトンネルの建設 コスト縮減を図るためには、セグメントがシール ド掘進時に受ける施工時荷重を把握するとともに、 土圧・水圧などの作用荷重を明らかにする必要が ある。そこで、大深度地下と同様の硬質な地盤を 対象として、洪積粘性土(土丹)を通過するシー ルドトンネルで実施した現場計測結果を分析し、 トンネルに作用する荷重の評価を行った。

2. 洪積粘性土中のトンネルへの作用土水圧

洪積粘性土を通過するシールドトンネルの覆工 に設置した土圧計、水圧計および鉄筋応力計から 得られた現場計測結果について、覆工組立時から 覆工に作用する荷重が一定となる時期に至るまで を時系列に整理し、シールドトンネル覆工に作用 する荷重を検討した。分析を実施したシールドト ンネルの諸元を表-1に示す。

覆工には、表-2に示すように各施工段階におい てi) 自重、ii)*テール内荷重、裏込め注入圧等 の施工時荷重、iii)水圧等の荷重が作用している と考えられる。計測結果の挙動については、それ ぞれのトンネルにおいて傾向は大きな差異が見ら

A Study on the Load of Shield Tunnel Constructed in the Hard Ground

れなかったので主にAトンネルの計測結果をもと に考察する。

2.1 Aトンネルにおける現場計測状況

Aトンネルは図-1に示す洪積粘性土層(N値> 50) を通過する土被り約52m(約4D、D: 覆工 外径)の位置に構築される。計測は、計測リング I (以下、1980Rと表記)および計測リングⅡ (以下、1981Rと表記)の2リングで実施している。 1980Rで土圧、水圧、鉄筋応力度を、1981Rで土 圧、鉄筋応力度を計測している。

2.1.1 セグメント組立からテール脱出後の変化

計測リングの位置とシールドマシンの位置関係 は図-2に示すとおりであり、シールドマシン内に は2リング分のセグメントリングが留まる。 1980Rから2リング先のセグメント(1982R) 掘 進時にテールシール反力、*テールシールグリス圧 (以下、テール内荷重と表記)、ジャッキ推力等が 作用する。Aトンネルにおける1981R組立後約40 時間経過までの土圧の計測結果を図-3に示す。土 圧の経時変化より、1981Rが概ねテール内に存在

の位置と地盤条件

各施工段階において想定	され	しる 荷	重
-------------	----	------	---

各施工段階	計測リングに作用する想定荷重
①組立完了時	自重
②テール脱出前	自重、施工時荷重(テール内荷重、 ジャッキ推力等)
③テール脱出直後	自重、施工時荷重(裏込め注入圧 等)、施工時荷重の残留分(テール 内荷重、ジャッキ推力等)、水圧
④長期安定時	自重、施工時荷重の残留分(テール 内荷重、ジャッキ推力、裏込め注入 圧等)、水圧、土圧

表・2

^{*} 土木用語解説 : テール、テールブラシ、テールシールグリス

推力

図・3 1981R組立後約40時間経過までの土圧の経時変化 するときはテール内荷重が、計測リングがテール から脱出した後は裏込め注入圧が作用している。 テールから脱出した後の土圧は、裏込め注入が行 われるセグメント掘進中に上昇し、掘進停止後に 掘進前の状態に戻る。裏込め注入圧の影響は、計 測リングに裏込め注入が行われる1984R掘削時の テール脱出直後が最も大きく、徐々にその影響が 小さくなり、土圧の変動がわずかとなる。その後、 土圧の値は、徐々に低下し、一定値に収束する。 なお、鉄筋応力度の経時変化は、土圧と同様に掘 進時に大きな変化を示したが、その変動は土圧の 変化に比べて小さかった。

2.1.2 長期安定時に作用する土水圧

計測リング組立から約2.5ヶ月経過時(以下、 長期安定時と表記)までの土圧と水圧の計測結果 の推移を図-4に示す。土圧は、計測当初に大きな 変動の後、ある一定値に近づく傾向を示した。計 測当初の変動は、テール内荷重や裏込め注入によ

る施工時荷重による一時的な影響を受けているも のと考えられる。土水圧の推移は、水圧は比較的 早い時期に一定値に収束し、土圧は時間とともに 徐々に低下している。土圧および水圧の計測値の 関係を見ると、計測センサーの位置が一致してい ない箇所もあるが、θ=90°(側壁部)を除いて天

> 端を含めて、他の計測点は長期安定時の土 圧は水圧に近づく方向に推移している。

> θ=90°の土圧が低下せずに計測当初から変 化がないのは裏込め注入圧等の何らかの影 響を受けたものと考えられる。なお、水圧 の計測結果をもとに、深度方向の水圧分布 を回帰分析によって推定した結果、計測値 が地下水位から求められる静水圧分布と概 ね一致した。

2.2 各トンネルに作用する長期安定時における 土水圧

図-5にA、Bトンネルの長期安定時における土水 圧分布を示す。図は計測データが収束した長期安 定時のデータを用いて、水圧の結果をもとにトン ネルに作用する静水圧を推定し、その結果と比較 したものである。図より、一部のデータを除いて、 いずれのトンネルにおいても土圧計から得られる 値と推定した静水圧との差は小さい。

ここで、土圧が作用していないと考えた場合、 長期安定時に覆工に作用している荷重が覆工自重 および水圧であるとすると、浮力に対して抵抗す る荷重は自重のみであるため、自重-浮力<0と なり、トンネル上方に地盤反力が生じると考えら れる。そこで、各トンネルの天端の計測土水圧、 浮力と自重の関係から計算される上側への圧力と の関係を表-3に整理した。表より、各トンネルの (土圧-静水圧)の値と(浮力-自重)の値は比較的 近似した値を示しており、いずれのトンネルも地 盤反力がトンネル天端に作用しているものと考え られる。

(a)Aトンネル (b)Bトンネル 図-5 長期安定時における土水圧分布

-17 -

	天端の計測土圧と推定静水圧			浮力と自重によって 天端部に生じる地盤反力				
トンネル名	土圧 (kN/m ²)	静水圧 (kN/m ²)	土圧-静水圧 (kN/m ²)	浮力※ (kN/m ²)	自重※※ (kN/m ²)	浮力-自重 (kN/m ²)		
A トンネル	345.0	324.5	20.5	96.8	40.8	56.0		
Bトンネル	317.5	304.0	13.5	42.8	20.4	22.4		
※ 浮力=単位長さあたりのトンネルの体積×水の単位体積重量/トンネル直径								

表-3 計測土水圧と浮力と自重の関係

※※自重=単位長さあたりの覆工自重/トンネル直径

以上の検討より、長期安定時ではトンネルに直 接作用している荷重は、自重、水圧であり、土圧 は作用していないか、作用しても非常に小さいこ とが考えられる。

3. トンネルに作用する土水圧以外の施工時荷重の評価

3.1 テール内における施工時荷重

ここでは、鉄筋応力計測値から求められる断面 力と表-2に示した各施工段階のうち、テール内に おいて覆工が受けると想定される荷重を載荷させ たときに求められる断面力との比較を行い、それ ぞれの段階で作用する荷重を検討する。

断面力の算定にあたっては、図-6に示すような 継手の剛性を評価できる2リングはりばねモデル による骨組み構造解析によった。解析に用いた各 トンネルの設計定数は、トンネル設計計算書を参 考にするとともに、回転ばね定数およびせん断ば ね定数は実大供試体を用いた試験結果等により得 られた値を用いた。後述する仮想荷重の設定に用

図・6 骨組み構造解析モデル

いる側方土圧係数は「トンネル標準示方書(シー ルド工法・同解説)」における値(固結した粘性 土の値)1)を参考に設定した。また、テール内に おける仮想の地盤反力係数は、特に定まった設定 方法がないことから、k=10MN/m³とk =30MN/m³ を用いた。

ここで、セグメントがテール内に位置している 時の断面力を発生させる荷重として、テール内荷 重と仮想荷重を考えた。テール内荷重は、計測セ グメントに設置された土圧計が*テールブラシ内 を掘進通過する間の土圧計の平均値とした。また、 仮想荷重は、図-7に示す土水分離の荷重モデルを

考えて、鉛直土圧Peの 大きさとして、トンネ ル直径(D)に土の水 中単位体積重量を乗じ たものを基本に、その 大きさを適宜変化させ た。

荷重を載荷したときの骨組み構造解析により算出 した断面力(解析値)と鉄筋応力計測値から算出 した断面力(計測値)の比較を図-8に示す。ここ で、断面力(計測値)は計測セグメントがテール 内に位置する際の鉄筋応力度が最大値の時点を示 す。

図より、Aトンネルはテール内荷重に1Dの仮

想荷重を加えた荷重を、Bトンネルは仮想荷重を 考慮せずにテール内荷重だけを考えることで、計 測値から求めた断面力に概ね近い分布となった。 仮想荷重の加算分としては、土圧計の値では評価 できないトンネル軸方向に作用するシールド掘進 時の推進ジャッキによる施工時荷重、テール脱出 後の隣接する覆工が受ける裏込め注入による影響 などが考えられる。なお、仮想地盤反力係数の違 いによる断面力の顕著な差異が見受けられなかっ たことから、シールドテール内における仮想地盤 反力係数の値としては10~30MN/m³程度を適用 できるもの考えられる。

以上より、セグメントがテール内に位置してい

る時の断面力は、施工時荷重であるテール内荷重 と仮想荷重を適切に評価することで算定できると 考えられる。

3.2 長期安定時に作用する荷重

ここでは、想定荷重を載荷させたときの骨組み 構造解析により算出した断面力(解析値)と鉄筋 応力計測値から算出した断面力(計測値)の比較 を行い、長期安定時における各トンネルに作用す る荷重について評価する。

解析はテール内における施工時荷重と同様な方 法とした。載荷荷重は、図-7で示した荷重モデル のテール内荷重を水圧に置き換えた荷重モデルを 基本に、自重と水圧のほか、鉛直土圧Peの大き さとして、トンネル直径(D)に土の水中単位体 積重量を乗じたものを基本に、その大きさを適宜 変化させた。なお、地盤反力係数は二次元FEM 解析による方法²⁾により求めた値(Aトンネ ル:20 MN/m³、Bトンネル:123 MN/m³)を用い た。

荷重モデルを仮想荷重として与えた時の骨組み 構造解析により算出した断面力(解析値)と鉄筋 応力計測値から算出した断面力(計測値)の比較 を図-9に示す。これより、それぞれのトンネルに おいて異なるが、長期安定時の計測断面力に近似 する解析条件は、静水圧だけでなく、仮想荷重と

石村利明*

独立行政法人土木研究所つくば 中央研究所道路技術研究グルー プトンネルチーム 主任研究員 Toshiaki ISHIMURA

独立行政法人土木研究所つくば 中央研究所 道路技術研究グ ループ長(前独立行政法人土木 研究所つくば中央研究所道路技 術研究グループトンネルチーム 上席研究員)、工博 Dr.Hideto MASHIMO

して施工時荷重の残留分に相当する鉛直荷重を作 用させた場合であることが分かる。

以上より、洪積粘性土(土丹)中におけるシー ルドトンネルの作用荷重の評価にあたっては、長 期安定時においても施工時荷重の残留分による影 響を考慮する必要があることが分かった。

4. まとめ

洪積粘性土(土丹)の硬質地盤中に建設される トンネルにおける現場計測結果に基づいた分析に より、以下のことが明らかとなった。

①水圧は静水圧が作用する。

- ②長期安定時ではトンネルに直接作用している荷 重は、自重、水圧であり、土圧は作用していな いか、作用しても非常に小さい。
- ③セグメントがテール内に位置している時の断面 力は、施工時荷重であるテール内荷重と仮想荷 重を適切に評価することで算定できる。
- ④長期安定時におけるシールドトンネルに作用す る荷重の評価にあたっては、自重、水圧のほか、 施工時荷重(テール内荷重、裏込め注入圧、 ジャッキ推力等)の残留分の影響を考慮した荷 重を考えることで、長期安定時におけるセグメ ント断面力を近似することができる。

今後は、現在のセグメント設計では考慮できて いないシールド掘進・組立てに伴う施工時荷重の 定量的な評価手法を検討することが課題となる。

参考文献

- 1) 土木学会:トンネル標準示方書 シールド工法編・ 同解説、p44、2006.7
- 2) 真下英人、左近嘉正、石村利明、岡田範彦: 良質 地盤におけるセグメント設計に用いる地盤反力係 数に関する一考察、トンネル工学報告集、第16巻、 pp295-302、2006.11

独立行政法人土木研究所つくば 中央研究所道路技術研究グルー プトンネルチーム 上席研究 員、工修 Katsunori KADOYU