報文

深層崩壊に起因する土石流の数値シミュレーション手法

西口幸希* 内田太郎** 田村圭司*** 里深好文

1. はじめに

豪雨や地震等に伴う山腹崩壊により、しばしば 土砂災害が発生している。なかでも深層崩壊は発 生直後に大規模な土石流となることがあり、近年 でも1998年の鹿児島県出水市、2005年の熊本県 水俣市で多数の犠牲者がでた。このような被害を 防ぐため、数値シミューション技術等を用いて土 石流の流下過程や氾濫範囲等を予測することは重 要と考えられ、これまでにも多くの事例に対し土 石流の再現計算が行われてきた。

一方、土石の挙動は粒度に大きく依存すると考 えられており、単一粒径の条件下で構築された土 石流モデルでは、大規模な土石流に含まれるよう な幅の広い粒度分布の土石の挙動を十分には表現 できないことが指摘されている。これに対し、大 規模な土石流中の細砂は液相とみなせると仮定す ると土石流の流下・堆積を再現できる可能性があ ることが報告された1),2)。しかし土石流の流下・ 堆積をコントロールする要因は数多く、実際、計 算に用いる入力条件の多くは、逆推定された値や 一般値とされる値が用いられてきた。

そこで本研究では、極力現地観測結果や理論式 に基づき入力条件を設定し、不明確な条件につい ては計算結果に及ぼす影響を検討しながら数値シ ミュレーションを行い、深層崩壊に起因する土石 流の流下・堆積を推定する手法の構築を行った。

2. 計算モデル

2.1 計算モデルの考え方

一般的な土石流モデルにおいて、土石流は、図 -1(a)に示すように、層流状態で移動する土砂 (固相)と、乱流状態で移動する間隙水(液相) の2つの相からなると表現されることが多い。一 方、規模の大きい土石流など、広い粒度分布をも つ土石から構成される土石流においては、土石流 中の細砂は間隙水の乱れの影響を受けて間隙流体

Numerical simulation for a debris flow triggered by a deep rapid landslide

中に浮遊し、間隙水と一体となって流下するため、 液相と扱うことができると考えられている(図・ 1(b))¹⁾。従って本研究では、深層崩壊に起因す る土石流中の細砂は液相とみなすことができると 考えた。

間隙水

細砂 粗碑

(a) 一般的な土石流モデル (b) 本研究の土石流モデル 図-1 土石流の概念図

2.2 土石流に係わる理論式

 $D = d(D_c)$

液相とみなすことができる細砂の最大粒径を Dcと定義すると、崩壊直下地点における土砂濃 度C₁、土石流の液相密度₀および土石流の代表 粒径 D はそれぞれ式(1)~(3)のように表される。

(1) $C_d = (1 - w)(1 - P(D_c))$

$$\overline{\rho} = \frac{w\rho_w + (1-w)\rho_s P(D_c)}{\overline{w} + (1-\overline{w})P(D_c)}$$
(2)

(3)

ここで、 $P(D_c)$ は D_c の重量百分率、wは崩壊土砂 の含水率、wは土石流の含水率、 $\rho_{x}\rho_{w}$ はそれぞれ 土粒子、清水の密度、d(D_c)はD_c以上の土石の平 均粒径である。

また、河床の侵食により土石流に取り込まれた 土石のうち、細砂は液相とみなすことから、粗礫 の連続式は以下のように表される。

$$\frac{\partial C_d h}{\partial t} + \frac{\partial C_d u h}{\partial x} + \frac{\partial C_d v h}{\partial y} = i C_* \left(l - P(D_c) \right)$$
(4)

ここで、 C_* は河床の土石の容積濃度、uはx方向 の流速、vはy方向の流速、hは水深、iは侵食速度 である。

3. 検討対象

3.1 対象事例

本研究では、2003年7月20日、熊本県水俣市の 集川において、豪雨に伴い発生した深層崩壊を起 因とする土石流を対象事例とした(図-2)。深層 崩壊は、安山岩と風化した凝灰角礫岩の境界面で 発生したと考えられている。また現地の状況やヒ アリング結果より、土石流は泥分を主体とした土 石流が先行し、数十分後に石礫を主体とした土石 流が流下したと考えられている。崩壊地から堆積 区間の末端までの距離は1,600m程度であった。

3.2 実態調査

(1) 土石流の流下幅および縦断形状

土石流の流下幅は、土石流発生後の航空レー ザー測量から得られた数値表層モデル(DSM) および数値標高モデル(DEM)の横断図を重ね 合わせ、裸地化した範囲の幅として推定した。堆 積区間は、土石流発生後の航空写真より、石礫が 卓越して堆積した領域の堆積幅を推定した(図・3 下)。また、土石流発生前の航空写真、土石流発 生後のレーザー測量結果より土石流発生前後の縦 断形状を推定した(図・3上)。

図-3 石礫型土石流の流下幅・縦断形状

(2) 崩壊土砂の間隙率

崩壊地周辺の2箇所のボーリング孔においてγ 線散乱による湿潤密度の測定および中性子線散乱 による含水量の測定を行い、両者の結果から崩壊 土砂の間隙率を算定した。崩壊のすべり面と考え られた安山岩と風化した凝灰角礫岩の境界から表 土までの深度方向の平均間隙率は34%であった。 (3) 粒度分布

土石流の粒度分布は、流下区間の土石流堆積物 の断面写真から7.5cm~30cmの粒度分布および 7.5cm以下と30cm以上の礫の占める割合を求め、 粒径7.5cm未満の土砂のふるい分け試験結果およ び粒径30cm以上の巨礫調査結果をその割合に応 じて合成して求めた。平均粒径は26cmであった。 (4) 石礫と泥分の割合

土石流流下前後の空中写真、流下後のレーザー 航空測量結果等より、流下区間(図-2の緑)から 堆積区間(図-2の青及び橙)への流入土砂量は約 9.0万m³、そのうち堆積区間の土砂量は約7.7万 m³(石礫は約4.8万m³、泥分は約2.9万m³)、宝 河内川を流下した土砂は約1.3万m³と推定された。 泥流は高台に乗り上げ、流水の影響を受けにくい 範囲で堆積し、石礫はその後の流水の影響を受け やすい範囲で堆積していたことから、宝河内川を 流下した土砂は泥分よりも石礫が多く含まれてい た可能性が高く、これを石礫とみなすと、流下区 間から堆積区間へ流入した石礫は、約6.1万m³と 考えられる。

4. 数値シミュレーション

4.1 計算プログラム

計算は土石流シミュレータ(Kanako2D)を用 いた。これは土石流の発生・流動域を1次元で、 土石流の氾濫・堆積が生じる緩勾配扇状地を2 次元で計算を行うことのできるプログラムで、石 礫型土石流から掃流状集合流動、掃流砂までの土 砂移動形態に対して適用可能である³⁾。

4.2 入力条件の設定

(1) 地形

計算は、主たる流れと考えられている石礫型土 石流に対し、崩壊地直下から土石流堆積域の末端 付近までの区間を対象とした。

渓床の縦断形状や土石流の流下幅は調査結果より設定した(図-3)。また土石流発生前の移動層

厚は、調査結果から侵食域の最大侵食深である 5mとしたが、実際の侵食域は部分的に露岩して いたものの、不安定土砂の堆積箇所もみられたこ とから、土石流発生前の堆積層厚がより厚かった 可能性も考え、10mの場合の計算も実施した。 (2) 土砂濃度・液相密度・粒径

計算区間上流端の土砂濃度、土石流中の液相密 度、土石流の代表粒径はそれぞれ式(1)~(3)によ り求めた。ここで液体として振舞う細砂の最大粒 径(*D*_c)は、0,10,20,30,100 (mm)の5通り設定 した。崩壊土砂は飽和状態を仮定し、ボーリング 孔の調査結果からその含水率wを34%とした。ま た土石流は渓床堆積物を巻き込みながら流下した ため、土石流中の土砂は崩壊土砂と渓床堆積物の 混合物と考えられる。よって土石流の液相密度 *p* の算定に用いる土石流の含水率wは、崩壊土砂の 含水率測定結果(34%)と渓床堆積物の間隙率 の一般値(0.4)の平均値(37%)とした。粒度分 布は調査結果を用いた。土石流の代表粒径*D*や土 石流中の液相密度 *p* は、時空間的に一定とした。 (3) 流量

山腹斜面からの全崩壊土砂量に対する石礫型土 石流の土砂量の割合(k)は、堆積区間への流入土 砂の調査により推定された石礫の割合(0.7(土砂 量:21,350m³))に設定した。ただし、堆積区間へ の流入土砂は崩壊土砂のほか、渓床堆積物も含ま れていることから、k =0.5(土砂量:15,250m³)、k =0.9(土砂量:27,450m³)の場合も計算を行った。

計算区間の上流端のハイドログラフは、総流量 が石礫型の土石流の総量となるように設定した。 そのうえで、崩壊土砂が形状を保ったまま、等速 で崩壊地直下に流下したと仮定し、流速と水深は 高橋の抵抗則に基づくとすると、次式が導かれる。

$$t_{s} = \frac{5(a_{i} \sin \alpha \ L^{5} B_{m}^{-5})^{1/2} d(D_{c})}{2\left\{C_{d} + (1 - C_{d}) \frac{\rho}{\rho_{s}}\right\}^{1/2} \left\{\left(\frac{C_{d*}}{C_{d}}\right)^{1/3} - 1\right\} (V_{s}^{-3} g \ I_{m})^{1/2}} (5)$$

ここで、*ts*は継続時間、*L*は崩壊斜面長、*Im,Bm*は それぞれ計算区間上流端の勾配、流下幅、*Vs*は 土石の総量、*Ca**は堆積土砂の最密充填濃度、*p*は 崩壊直下における液相密度、*g*は重力加速度、 *a_i*,*a*は定数でそれぞれ0.042,17.8°である⁴⁾。図-4 に、変数*D_e*に対するハイドログラフを示す。

水俣市深川観測所の崩壊発生時付近の最大10

分間雨量は26mmであった。この雨量による崩壊 直下地点の流量は流出率を1.0としても30m³/sec と算定され、図-4の流量に比べて非常に小さいた め、降雨による流量の増分は無視できると考えた。

図-4 各Deに対するハイドログラフ

4.3 計算結果

各*D*_cに対する河床変動高の計算結果を図-5に示 す。*D*_c=0mmのとき、すなわち、土石流中の土石 は全て固相として扱った場合、計算で求めた土石 流の到達距離は約600mで、実際の土石流の4割 程度であった。また、土砂は崩壊地の直下から堆 積し、侵食は生じないと計算された。また*D*_cの 値が大きくなるに従い、計算での土石流の到達距 離および渓床の侵食区間距離は長くなった。 *D*_c=20mmのとき、到達距離および侵食区間距離 ともに実際の土石流と概ね合っていた。

ここで*D*_c=20mmとし、全体の崩壊土砂量に対 する石礫型の土石流の土砂量の割合(*k*)を0.7から 0.5や0.9に変化させても、土石流の到達距離およ び侵食区間距離はほとんど変化せず、実際の土石 流と概ね一致した(図・6上)。また初期の移動層 厚*D*_sを5mから10mに変化させた場合、侵食区間 の侵食深はより大きく計算されたが、到達距離お よび侵食区間距離に関しては、初期の移動層厚に よらず計算結果は概ね一致した(図・6下)。本事 例では、石礫型土石流の土砂量の割合や初期の移 動層厚が土石流の到達距離および侵食区間距離の 計算結果に及ぼす影響は小さいことが分かった。

図-5 各 Dcの計算結果と観測結果

-26-

図-6 kとDsを変化させた計算結果と観測結果

5. 考察

再現性が高いと考えられた*D*_c=20mmの妥当性 を検証するため、粒径20mmの土粒子の沈降速度、 土石流中の間隙流体の乱れ速度、土石流の摩擦速 度を比較した。沈降速度はRubeyの式により算定 した結果、37cm/sであった。摩擦速度は計算結 果(*D*_s=20mm)の平均水深を用いて算定すると 164cm/sとなった。間隙流体の乱れ速度も同様に 計算結果の水深、流速を用いて、堀田ら⁵⁵が示し た算定式により80cm/sと得られた。従って、土 石流の摩擦速度および間隙流体の乱れ速度は、粒 径20mmの土砂は当該土石流中で浮遊し、かつ乱流 状態で流下する可能性があることを示しており、 土石流中に働く応力関係からも、20mm以下の細 砂を液相とみなすことの妥当性を確認できた。

6. まとめ

本研究では、深層崩壊に起因する大規模な土石 流中の細砂は、間隙流体中に浮遊し、間隙水と一 体となって流下する、言い換えれば、細砂を液相 として扱えると仮定した。この細砂の最大粒径 Dcに着目し、土石流の土砂濃度や液相密度、代 表粒径や土砂の連続式を提示したうえで、調査結 果に基づいた入力条件の設定のもとで、2003年 に集川で発生した土石流事例に対し、数値シミュ レーションを行った。その結果、細砂を液相とし て扱うことで、土石流の流下・堆積過程の再現性 が高まることが分かった。また、最もよく再現で きたD_cは、その沈降速度と土石流の摩擦速度、 間隙流体の乱れ速度の大小関係からみても、妥当 と考えられる範囲の値であった。以上より、本研 究の手法を数値シミュレーションに適用すること により、深層崩壊に起因する土石流の流下過程を 推定できる可能性を示した。

参考文献

- 高橋保・中川一・原田達夫:混合粒径材料からなる 渓床侵食型土石流の予測、京都大学防災研究所年報、 第33号B-2、1990
- 2) 江頭進治・本田尚正・宮本邦明: 姫川支川蒲原沢土 石流シミュレーション、水工学論文集、第42号、 1998
- 3) Nakatani K. Wada, T., Satofuka Y., & Mizuyama T. : Development of "Kanako 2D (Ver.2.00)," a user-friendly one- and two-dimensional debris flow simulator equipped with a graphical user interface, International Journal of Erosion Control Engineering, 1, No. 2, pp.62-72, 2008
- 4) 高橋保:土石流の機構と対策、近未来社、p.56、2004
- 5) 堀田紀文・宮本邦明・鈴木雅一・太田猛彦:回転円 筒水路を用いた高濃度固液昆相流における間隙水圧 分布の測定、砂防学会誌、Vol.50、No.6、pp.11~16、 1998

独立行政法人土木研究所 つくば中央研究所土砂管 理研究グループ火山・土 石流チーム 交流研究員 Yuki NISHIGUCHI

独立行政法人土木研究所 つくば中央研究所土砂管 理研究グループ火山・土 石流チーム 主任研究 員、農博 Dr. Taro UCHIDA

田村圭司***

国土交通省九州地方整備局 雲仙復興事務所長(前独立行 政法人土木研究所つくば中 央研究所土砂管理研究グ ループ火山・土石流チーム 上席研究員) Keiji TAMURA

里深好文****

立命館大学理工学部都市 システム工学科、工博 Dr. Yoshifumi SATOFUKA