報文

コンクリート用再生骨材等の再資源化の過程における 二酸化炭素固定量

長濵庸介・神田太朗・角湯克典

1. はじめに

コンクリートは、炭酸化と呼ばれる以下の反応 により構造物の供用期間をとおして大気中の二酸 化炭素を固定する1)。

$$Ca(OH)_2+CO_2 \rightarrow CaCO_3+H_2O$$
 ·····式(1)
 $(CaO)_3(SiO_2)_2(H_2O)_3+3CO_2$
 $\rightarrow 3CaCO_3+2SiO_2+3H_2O$ ···式(2)

構造物の解体により発生したコンクリート塊を 再資源化のために破砕すると、「コンクリートの 比表面積の増大」、「炭酸化が進行していない新し い破断面の出現」、「比表面積が大きい細粒分への セメント水和物の偏在」により、二酸化炭素の固 定速度が高くなると考えられる2)。

コンクリート塊の再資源化の過程における二酸 化炭素固定量を明らかにすることは、建設廃棄物 のリサイクルを通じた低炭素社会の推進に資する ことが期待される。しかし、これまでのところ二 酸化炭素の回収量に関する知見は乏しく、温室効 果ガス国家インベントリや京都議定書目標達成計 画のような統計や目標にも反映されていない状況 である。

本研究では、二酸化炭素固定の概略影響のうち、 まずはコンクリート塊の再資源化の過程における 二酸化炭素固定量を捉えることが重要であると考 え、コンクリートの主な再生利用方法である路盤 材(RC40)、及び新たな再生利用方法としてJIS化 されたコンクリート用再生骨材(H、M、Lの細骨 材、粗骨材及び微粉)を模擬した試料を作成し、 それらの二酸化炭素固定量を測定した。

2. 二酸化炭素固定量の測定

2.1 試料

二酸化炭素固定量の測定に使用する、路盤材や コンクリート再生骨材を模擬した試料を作成する

表-1 促進中性化の条件

CO ₂ 濃度(%)	温度 (℃)	相対 湿度 (%)	中性化期間(週)	供試体 寸法(cm)	数量 (本)
			1	ϕ 15×30	2
20	20	60	8	ϕ 15×30	36
			26	ϕ 15×30	2

※供試体表面が湿っている為、真空乾燥機を用いて表面のみを乾かした。その後、アルミ箔テープで円柱供試体の側面を被覆し、上下面は露出の状態

※円柱供試体の上下面に霧吹きで15回ずつ水を噴霧 した後、養生槽内で促進中生化を開始した。 ※この条件のほかはJIS A 1153「コンクリートの促

進中性化試験方法」による

ため、初めにその材料としてコンクリート供試体 (寸法φ15×30cm) を40本作成した。次に、コン クリート塊発生時までの二酸化炭素固定状態を再 現するため、表-1及び写真-1に示した方法により 促進中性化を行った。最後に促進中性化を済ま せたコンクリート供試体について、表-2及び写 真-2に示した方法により再資源化の模擬を行い、 二酸化炭素固定量を測定するための試料を作成

なお、保管期間は中間処理工場における破砕 から出荷までの仮置き期間に関する既往知見3)を 参考に設定した。

2.2 測定

コンクリート塊の再資源化の過程における二酸 化炭素固定量を把握するため、本調査で測定する 二酸化炭素固定量は、再生骨材等の保管期間内 に固定された量とし、保管期間の前後に測定し た値の差分によって算出した。

具体的には、コンクリートの中性化を測定する 方法の一つである**示差熱重量分析**4)を用いて、加 熱時の脱炭酸量として直接測定した。この分析で は、炭酸カルシウムの定量温度範囲は600~1000 。C、水酸化カルシウムの定量温度範囲は450~ 500 °Cとした。

Carbon dioxide uptake by recycling of concrete ※十木用語解説:示差熱重量分析

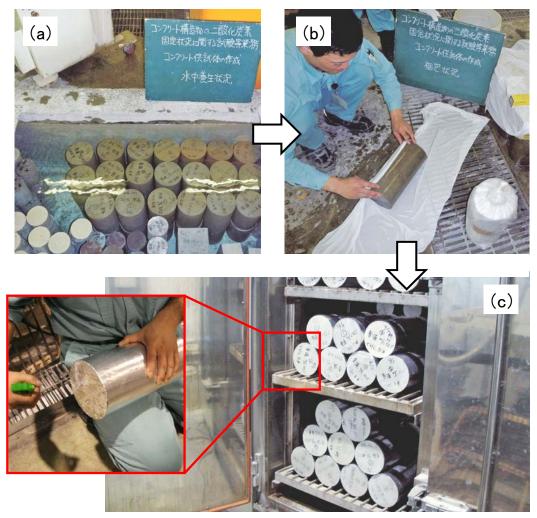
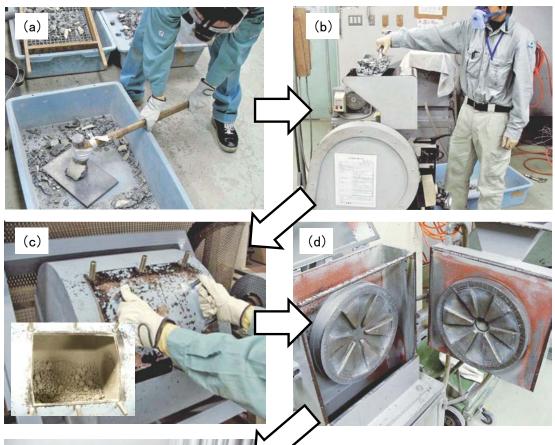



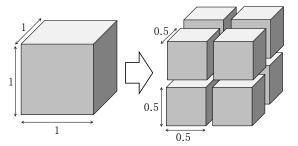
写真-1 コンクリート供試体の作成と促進中性化の様子

- (a) 作成したコンクリート供試体(水中養生) (b) 大気と断絶するため、濡れタオルを巻いて保管 (c) アルミ箔テープで供試体の側面を被覆して促進中性化 (供試体の上下面は露出させ、構造物供用中の状態を再現した)

表-2 再資源化の条件

再生製品の区分	再生製品の細目	参照する基準類	保管条件•期間	供試体 数量(本)	
			乾湿繰返し・28日	4	
RC40	(<40mmの試料)	 舗装再生便覧	 乾湿繰返し・91日	20	
NC40	(\10mm\2)p\4\7)	開表行工 区見	元型派及し 31日	6	
			自然乾燥 •91日	U	
	再生粗骨材H(5-20mm)	JISA5021	乾湿繰返し・28日	3	
再生骨材H	再生細骨材H (0.15-5mm)	「コンクリート用再生骨材H」			
(機械的処理)	再生微粉 (<0.15mm)	_	乾湿繰返し・28日		
			自然乾燥・28日		
	再生粗骨材H(5-20mm)	JISA5021	乾湿繰返し・28日	3	
再生骨材H	再生細骨材H (0.15-5mm)	「コンクリート用再生骨材H」			
(熱的処理)	再生微粉 (<0.15mm)	_	乾湿繰返し・28日	3	
			自然乾燥・28日		
再生骨材M	再生粗骨材M (5-20mm)	JISA5022付属書A(規定)	・乾湿繰返し・28日	2	
11 T H W11A1	再生細骨材M(0.15-5mm)	「コンクリート用再生骨材M」			
再生骨材L	再生粗骨材L(5-20mm)	JISA5023付属書1(規定)		2	
17工月771	再生細骨材L(0.15-5mm)	「コンクリート用再生骨材L」			

(e)


写真-2 再生骨材の製造例

- (a) コンクリート供試体をこぶし大に破砕
- (b) ジョークラッシャーを用いて粗砕 (c) ボールミルを用いて、砕いた供試体に付着しているセメントを除去 (鉄球を入れたドラムを
- いるセメントを除去 (鉄球を入れたトラムを 回転し、衝撃力により粒子を粉砕) (d) トップグラインダーを用いて、砕いた供試体に 付着しているセメントを除去 (鋼製ディスクを 回転し、摩擦力で粒子の表面を磨く) (e) 製造した再生骨材の保管状況

3. 二酸化炭素固定量の測定結果

製品別の二酸化炭素固定量測定結果及びコンク リート塊1tからの各粒群の生成割合を表-3に示す。 なお、一部の数値については解釈の余地が残って おり、確定したものではない。

測定の結果、再生骨材等の二酸化炭素固定量は、 再生骨材に含まれるセメント量が多いほど、粒径 が小さいほど(図-1に示すように表面積が大きい ほど) 大きい。また、粗骨材、細骨材、微粉の生 成割合を考慮すると、表-4の原コンクリート1ト ンあたりの製品別二酸化炭素固定量の推定結果に 示したように、再生骨材 $H \ge M \ge L \ge RC40$ の順 に大きい。ただし、骨材、微粉の生成割合、粒度、

破砕前(表面積:1×6=6)

破砕後(表面積:0.25×6×8=12)

図-1 コンクリート塊の破砕による表面積の増加 (模式図)

コンクリート塊を破砕すると、大気に触れる表面 積が増加する(仮に、8分割すると表面積は2倍に増 加する)ため、二酸化炭素固定量も大きくなる。

保管方法について実プラントの状況等を調査した 上で、二酸化炭素固定量の感度分析を行う必要が あると考えられる。

表-3 製品別の二酸化炭素固定量測定結果及びコンクリート塊1tからの各粒群の生成割合

製品	二酸化炭素固定量(kg CO ₂ /t)			生成割合(質量%)		
35,00	粗骨材	細骨材	微粉	粗骨材	細骨材	微粉
再生骨材H(機械的方法)	1.94	6.14	62.9	40	15	45
再生骨材H(熱的方法)	1.26	4.03	55.5	36	22	42
再生骨材M	4.09	14.1	未測定	41	26	33
再生骨材L	6.41	25.6	未測定	70	22	8
RC40		9.96			100	

[※]乾湿繰返し条件で28日間大気暴露させたケース。

表-4 原コンクリート1トンあたりの製品別二酸化炭素固定量の推定結果

製品	二酸化炭素固定量(kg CO ₂ /t)	算出式(各粒群の二酸化炭素固定量×生成割合の合計)
再生骨材H(機械的方法)	30.0	$1.94 \times 0.40 + 6.14 \times 0.15 + 62.9 \times 0.45$
再生骨材H(熱的方法)	24.7	$1.26 \times 0.36 + 4.03 \times 0.22 + 55.5 \times 0.42$
再生骨材M	26.1	$4.09 \times 0.41 + 14.1 \times 0.26 + 62.9 \times 0.33$
再生骨材L	15.2	$6.41 \times 0.70 + 25.6 \times 0.22 + 62.9 \times 0.08$
RC40	10.0	9.96×1.00

[※]再生骨材MとLの微粉については二酸化炭素を計測していない。そのため、再生骨材MやLの製造方法に近い再生骨 材H(機械的方法)の製造時の微粉で代用した。

4. まとめ

本研究により、路盤材及びコンクリート用再生 骨材を模擬した試料の二酸化炭素固定量を測定す ることができた。なお、本調査は固定量のみに着 目しているため、LCA的観点から再資源化時の エネルギー消費等も考慮した正味の二酸化炭素排 出量を比較することが必要である。

今後は、さらなる調査・検証を行った上で、再 生骨材等への再資源化がもたらす低炭素化社会の 推進効果について発信していく予定である。

参考文献

- 1) セメント協会: C & C エンサイクロペディア、 pp.195~197、セメント協会、1996
- 2) 曽根真理、神田太朗:コンクリート塊の再資源化 による二酸化炭素固定、建設の施工企画、2011年
- 3) 黒田泰弘、菊池俊文:解体コンクリートによる二 酸化炭素の固定、コンクリート工学論文集、第 20 巻、第 1 号、pp.15~22、2009
- 4) 小林一輔:コア採取によるコンクリート構造物の 劣化診断法、pp.95~103、森北出版、1998

長濵庸介

国土交通省国土技術政策総合 研究所道路交通研究部道路環 境研究室 研究官 Yosuke NAGAHAMA

神田太朗

国土交通省道路局環境安全課 道路環境調查室環境対策係長 国土交通省国土技術政策 総合研究所環境研究部道路環 境研究室研究官)

Taro KANDA

角湯克典

(一財)日本みち研究所研究理事 調查部長兼駐車場研究室長 国土交通省国土技術政策 総合研究所道路研究部道路環 境研究室長)

Katsunori KADOYU