土研センター

沖縄本島中部漢那湾に流入する漢那福地川の河口閉塞

宇多高明

1. はじめに

沖縄の河川は、本土の河川と比べ河川延長が短 く、流域面積が小さいために河口閉塞が恒常的に 発生している1)。沖縄での河口閉塞による河川生 態系への影響としては、魚類の遡上行動の阻害、 大量斃死、マングローブの枯れ死などがあるとさ れ、解決すべき懸案の一つとなっている。このこ とから、大城・新垣2)は、沖縄本島北部の39河川 を対象として、河口閉塞に関係する要因として、 河川流量、波浪、入退潮流、河川供給土砂、漂砂、 河口の向き、感潮面積、リーフの有無、ダムや導 流堤の有無などの指標と、河口閉塞の関係につい て網羅的な調査を行った。しかし、急流河川にお いて河川から砂礫が供給される場合3)を除けば、 一般の砂河川での河口閉塞は、波の作用下で周辺 海浜から河口へ砂が運び込まれることにより起こ ることが多いこと4)を考えれば、多項目にわたる 網羅的な調査よりもむしろ波の作用による河口か らの砂の侵入に絞った調査が有効と考えられる。 そこで2016年7月5日、沖縄本島中部の漢那湾に 流入する漢那福地川河口を具体例として現地調査 を行い、河口閉塞要因について考察した。さらに それに基づいて閉塞防止策の提案も行った。

2. 漢那福地川の概況

調査対象の漢那福地川は、流路延長4.65km、 流域面積9.0km²の二級河川で、河口から1.1km 上流には漢那ダムがあり、ダム直下まで海水が遡 上する条件を有している。このため河川流出土砂 量は小さい。なお、漢那ダムからの維持流量は 0.0347m³/sとされており、自己流量により河口 砂州がフラッシュするには流量規模が小さい。河 口付近には干潟や湿地があり、旧漢那橋より上流 にはマングローブが生育しているが、河口閉塞に 伴う淡水化によりマングローブの枯れ死50も起き ている。

図-1 漢那湾に流入する漢那福地川周辺の衛星画像

図-1は漢那福地川の流入する漢那湾の衛星画像 を示す。漢那湾には東西に1,430mの長さのポ ケットビーチがあり、両端を長さ640mの岬で区 切られている。ポケットビーチのほぼ中央には漢 那漁港が位置し、漢那漁港の西500m付近に漢那 福地川流入している。また、漁港防波堤の東側に は幅60m、長さ430mの砂浜が広がっているのに 対し、漁港西側の砂浜は狭く、漁港防波堤の西側 直近の波の遮蔽域内にほぼ三角形状の砂浜がある のみである。地形的に見れば、漢那漁港が西向き の沿岸漂砂を阻止すると同時に、防波堤の西端か らの回折波が漢那福地川河口方面へも作用するた め、河口左岸では護岸が直接波に曝されている。 結果的に、漢那福地川の河口では東側からの沿岸 漂砂は河口に到達できず、河口閉塞にかかる漂砂 は主に右岸側から侵入する条件となっている。

3. 漢那福地川河口部の変遷

漢那福地川河口の閉塞について調べるために、 まず2010~2015年における4時期の衛星画像を収 集し、河口部の砂州状況の変化を比較した。まず、 図-2は図-1に示す矩形区域の2010年1月2日の衛 星画像を示す。福地川河口部において旧道は大き く曲がっていたが、道路の直線化が図られ、河口 に漢那橋(新橋)が架けられている。河口の西側 海岸には、矢印A、Bで示すように排水路と小河

River Mouth Closure of Kanna-Fukuji River Flowing into Kanna Bay in Central Okinawa

川が流入しており、とくに排水路Aでは汀線沖 に砂の堆積域が形成されていた。また、小河川 Bでは当時南向きの流路が伸びていた。一方、 河口内では右岸側から砂州が発達し、新橋から 旧橋まで長さ120mにわたって砂の堆積域が広 がっていた。とくに旧橋の直下流には、右岸か ら左岸へと対岸と繋がる寸前まで伸びた規模の 大きな砂嘴aが発達していた。一方、新橋より海 側では、右岸側から細長い砂州bが新橋の下へ入 り込むようにして伸びていた。図-3には同じ区 域の2012年11月25日の衛星画像を示す。2010年 1月2日には左岸に達する直前まで砂嘴が伸び、 河口が閉塞され流水が阻害されていたことから、 2012年11月25日までに旧橋から砂嘴aの先端部 を直線状に切って長さ113mの細長い溝が形成さ れたが、新橋下部の砂州は残されたままであっ た。この溝周辺の砂州条件には変化が見られな いことから、この溝は河口閉塞対策としての人 工掘削に起因すると考えられる。さらに図-4は 2013年3月8日の衛星画像を示すが、この画像に は2012年11月25日までに掘削されたと見られる 細長い溝を破線で示す。これと2013年3月8日の 画像を比較すると、細長い溝の下流側約33mが 新橋の下を通って海から運び込まれた砂によっ て埋まった。しかしながらこの堆砂域も砂嘴a先 端部までは達していなかった。続いて図-5には 2015年1月4日の画像を示す。この衛星画像にも 2013年3月8日の砂州形状を破線で示す。2013年 3月8日には細長い溝の下流端付近で再堆積が起 きていたが、その堆積部分の長さ33m分が除去 され、細長い溝の長さが増した。

以上のように、漢那福地川の河口部では河口 閉塞が進んだことから、対策としての掘削が行 われてきた。一方、海浜部に流入する排水路A では上記4時期とも河口沖に土砂が堆積している ことが特徴として指摘できる。河口右岸側の海 岸線は河口へ向かって斜めに張り出しており、 全体に大きく湾曲している。湾内へと進む波は、 この湾曲した汀線への法線に対し右回りの方向 からの斜め入射となるため、海岸線に沿って河 口へと向かう沿岸漂砂が起こる条件となってお り、漂砂上手側に位置する排水路Aより土砂流 入があるため、流入土砂が漢那福地川河口右岸 へと運ばれ、河道内を上流へと遡って砂州を形

図-2 漢那福地川河口の衛星画像(2010年1月2日)

図-3 漢那福地川河口の衛星画像(2012年11月25日)

図-4 漢那福地川河口の衛星画像(2013年3月8日)

図-5 漢那福地川河口の衛星画像(2015年1月4日)

土木技術資料 58-12(2016)

土研センター

写真-1 漢那福地川の河口状況(①~⑥)

成したと見られる。このように漢那福地川河口で は、漢那福地川からの流入土砂ではなく、河口右 岸側の海浜から河口へと運ばれる漂砂により閉塞 が進んだと推定される。

4. 河口部の現地状況

4.1 河口南西側に続く海浜の状況

図-5には写真撮影地点番号を示す。現地踏査で は河口の南西側から海岸線に沿って海浜状況を調 べた後、漢那橋直下を通過して河道内へと達した。 漢那福地川河口の右岸側には排水路Aと小河川B が流れ込んでいるが、これらのうち排水路Aでは 土砂流入があり、排水路沖には常時砂の堆積域が 見られる。この付近の状況を写真-1①に示す。排 水路沖には砂が堆積し、細長い堆積域が沖向きに 伸びていた。写真-12は、小河川Bの河口部の状 況を示す。この川では河口からの流路が大きく東 向きに蛇行して流れており、蛇行状況は図-5に見 られる状況とよく一致した。一般に、沿岸漂砂が 卓越した海岸に小河川が流入する場合、その河口 部流路は沿岸漂砂の作用を受けて漂砂の下手方向 へと蛇行することが知られている。これを考慮す ると、小河川Bの前面では福地川河口方面へと向 かう沿岸漂砂が卓越することが分かる。前出の4 時期の衛星画像においては、2010年を除く3時期 とも小河川Bは東向きに蛇行しており、写真-1② に示す流路の蛇行状況と調和的である。写真-1③

は漢那橋の基部を望んだ写真である。河口右岸は 捨石護岸で防護されていたが、河口右岸側から続 く海浜の外縁をなす干潮時汀線が捨石護岸ののり 先(矢印)と一致し、その沖にも平坦面が続くこ とから、南西側から河道内へと向かう沿岸漂砂が 阻止されることなしに河口へと回り込める状況に あった。

4.2 河口内での堆砂状況

漢那橋から上流方向を望むと、写真・1④のよう に河口右岸から規模の大きな砂州が伸び、流路を ほとんど塞いでおり、わずかに左岸側に狭い水路 を残すのみであった。その状況を示すのが写真・1 ⑤である。直線状の流路に対して左(右岸)側か ら砂州が伸びているが、砂州上には写真に矢印で 示す向きに砂礫が運ばれた模様が残されていた。 このような漂砂は河口からの侵入波浪が上流へと 遡る波により引き起こされたことを示す。

次に、河道内へ降り立って河道内の堆砂状況を 調べた。まず、右岸側から河道中央へ向かって伸 びた砂州の上流端には河口から侵入した砂が堆積 して前置層が形成されており(写真-1⑥参照)、 その砂層厚は1mであった。同様な急勾配斜面は 現況の流路との間にも形成されており、この急斜 面ののり先と左岸の護岸の間に幅4mの流路が形 成されていた(写真-1⑦)。狭く、浅い流路は漢 那福地川の固有流量見合いでバランスしていると 見られる。一方、河口の右岸側では、写真-1⑧の

土研センター

写真-2 漢那福地川の河口状況(⑦~⑨)

ように浚渫土砂による盛り土がなされていたが、 盛り土ののり先は満潮時の侵入波浪により侵食さ れ、小規模な浜崖が形成されていた。この付近か ら削り取られた砂は上流方向へ運ばれ、やがて河 道を横断する方向に堆積する。右岸に沿ってさら に上流へと遡ると、水管橋の袂では右岸に沿って 波の作用で運び込まれた砂が橋台で阻止され、そ の下流側に砂州を形成していた(写真-1⑨)。こ の砂州においても河道内に砂が落ち込んだため急 勾配斜面が形成されていた。

5. まとめ

大城・新垣2)は沖縄本島の39河川での調査の結 果、河口閉塞が発生しにくい河川の特徴は、導流 堤や防波堤など沿岸漂砂を防ぐ施設が設置されて いる河川であり、感潮面積が大きい河川であると した。本研究で対象とした漢那福地川河口では、 規模の大きな河口砂州が発達して河口閉塞が起き ているが、河口砂州の形成に預かる砂は右岸側の 海浜から河口へと向かう沿岸漂砂により運び込ま れている。現況では、河口に架かる漢那橋の基部 を防護する橋台があるのみでその長さが短いため、 右岸側から河口へ向かう沿岸漂砂が何の障害もな く河口内へと流入している。この条件では河口掘 削を繰り返した分右岸側海浜から砂が運び込まれ るので、掘削の効果は一時的となる。河口での堆 砂を防止するためには、河口右岸側に導流堤(突 堤)を伸ばして漂砂の流入を阻止しなければなら ない。これは大城・新垣2)が述べたことと一致し ている。現況においては、河口閉塞への対策とし て漢那橋の上流150m区間は漁港管理者(東村) が管理し、河口浚渫を行っている5)。しかし浚渫 後堆砂が繰り返されていることから、河口右岸側

に導流堤を伸ばして漂砂を侵入防止を図った上で 河口内の浚渫を行う方式に改めれば、一度の工事 で堆砂量を大きく軽減可能と考えられる。他の手 法、例えばダムからの維持流量を増すなどの方策 を採用しても河口内での堆砂位置が変わるのみで 堆砂量自体の軽減とはならないことを考えれば、 この手法の有用性が明らかであろう。

参考文献

- 沖縄県河川課: http://www.pref.okinawa.jp/site/doboku/kasen/ kikaku/okinawanokasennotokutyo.html
- 大城朝一、新垣敏一:河口閉塞の発生要因と河川 環境に与える影響の検討、平成21年度沖縄ブロッ ク国土交通部会発表論文、No.11、pp.1~4、2009
- 宇多高明、星上幸良、小澤宏樹:福井県美浜町の 耳川の河口閉塞の実態と新しい河口処理法、日本 沿岸域学会研究討論会2016講演概要集、No.29 (PDF)、セッション9-4、2016
- 小林昭男、宇多高明、野志保仁、遠藤将利、本島 真也、星上幸良:内房に位置する保田海岸の人工 化要因の検討、日本沿岸域学会研究討論会2013講 演概要集、No.26 (PDF)、セッション08-03、 2013
- 5) 内間安治:漢那ダム下流河口閉塞に起因する河川 生態系への影響と対策、平成17年度国土交通省国 土技術研究会、pp.1~4、2005 http://www.mlit.go.jp/chosahokoku/h17giken/ program/kadai/pdf/ippan/kan1-02.pdf

(一財)土木研究センター、なぎさ 総合研究所長、日本大学客員教授 理工学部海洋建築工学科、工博 Dr. Takaaki UDA