軟弱地盤上の橋台基礎の健全度評価に関する実験および解析

1. はじめに

軟弱地盤上に設置された道路橋下部構造では、 施工時の盛土工による地盤の側方流動や、地震時 の液状化および流動化により、橋台や橋脚の移動 や傾斜などの変状が生じる事例がある^{1) 2)}。この ような変状が生じた場合、橋の供用性や安全性、 修復や再構築の可否などの判断には、基礎の健全 度を確認することが必要となるが、その確認のた めには、掘削などの大規模な調査が必要となる。 特に、大規模地震後など、早急に判断が求められ るときの対応として、大規模な掘削などを行うの は容易ではない。

このような背景から、本報告では、軟弱地盤上 に設置された道路橋橋台の背面盛土の埋立て施工 時において、盛土荷重の増加により盛土下部の軟 弱粘性土層が側方流動を起こし、この影響により、 橋台の側方移動が発生した事象を対象として、基 礎の健全度を評価するための解析手法を考案した。

具体的には、地上部で確認された橋台変位の計 測データを用いて簡便な計算モデルによる解析を 行うことにより、地中部の基礎の健全度を早急に 判断する評価方法を考案した。この評価方法を検 討するにあたり、杭の断面力を詳細に把握する必 要があることから、橋台の側方移動に関する模型 実験を行い、橋台変位や杭の断面力分布を把握し たうえで、実験における地上部の変位計測データ を用いて、簡便な計算モデルによる杭の応力状態 の再現解析を行った。

本報告は、健全度評価法の確立を目指し、上記 の実験および解析の検証結果を報告するものであ る。

想定する変状

2.1 橋台の側方移動

本報告では、軟弱地盤上に設置された道路橋下 部構造の変状として、橋台の側方移動を想定した。

Experiment and Analysis on Soundness Evaluation of Bridge Abutments Foundation on Soft Ground

大城一徳・坂下 学・谷本俊輔・七澤利明

図・1に示すように、橋台の側方移動とは、軟弱 地盤上に設けられた橋台が背面盛土に起因する偏 載荷重の影響により、施工時または施工後に主と して橋軸方向に大きな変位や傾斜を生じ、写真・1 に示すような種々の弊害が生じる現象をいう。橋 台が側方移動を起こす原因としては、土質、背面 盛土の形状・寸法、杭基礎などの基礎と軟弱地盤 との相互作用や盛土の施工条件などがある。

なお、盛土施工時の軟弱粘性土層の側方流動量 は、盛土荷重や圧密過程における粘性土の強度発 現度合に依存することから、これを簡易に再現す るために、次に示す模型実験は、遠心力場で実験 を行うこととした。

図・1 橋台の側方移動3)

(支承部の破損)
(連結部の破損)
写真-1 橋台の側方移動による損傷事例⁴⁾

表・1 実験ケース

3. 遠心模型実験

3.1 実験目的

基礎の健全度を評価するための解析手法を検討 するにあたり、杭の断面力を詳細に把握する必要 があることから、橋台の側方移動を再現する遠心 模型実験を行い、橋台変位や杭の断面力などの計 測値を得た。

3.2 実験方法

表-1に実験ケース、図-2に模型概要図を示す。 実験は、背面盛土高と軟弱粘性土層の地盤材料を パラメータとし、3ケースを75Gの遠心力場で 行った。

支持層は、層厚を12mとし、東北珪砂7号を用い、相対密度Dr=80%となるように作製した。

粘性土層は、層厚を12mとし、Case1、2では スミクレー、Case3ではカオリンを使用した。こ れらの材料の物理特性および力学特性は表・1に示 すとおりであり、スミクレーはカオリンに比べて 圧縮性が低く、せん断強度が大きいのが特徴であ る。スラリー状の材料を土槽に投入した後、予備 圧密用の載荷板を設置し(写真・2)、橋台前面盛 土層の75Gにおける上載荷重相当かつ橋台背面盛 土層の模型地盤作成時に必要となる強度として 80kPa程度の上載荷重を遠心力場で与えた状態で 予備圧密させることにより粘性土層を作製した。

写真-2 予備圧密用載荷板の設置

盛土層は、層厚をCase1、3で12m、Case2で 6mとし、東北珪砂7号を用い、相対密度Dr=80% となるように作製した。

模型杭は5列×3列とし、実物スケールで外径 1.05m、肉厚75mmとし、アルミパイプにより模 した。一部の模型杭には、軸ひずみ及び曲げひず みを測定するため、パイプの内側にひずみゲージ を設置した。杭頭はフーチングに剛結し、杭先端 は支持層に6m根入れさせた。

実験では、75Gに達するまで0.1G/分の速度で 遠心加速度を上昇させた。その後、地表の沈下量 の時刻歴に√t法を適用し、90%圧密を確認する まで遠心加速度を保持した。結果として、75Gに 達した後の圧密完了までに要した時間はCase1、 2で9~10時間、Case3で16時間程度(いずれも模 型スケール)であった。

3.3 実験結果

図・3に、Case3を例に実験後の模型地盤の残留 変位の観察記録を示す。背面盛土層に大きな沈下 が生じていること、それに比して背面盛土層や粘 性土層に生じた残留水平変位が小さいことが分か る。なお、フーチング上載土とさらにその背後で 変位量が不連続に変化しているのは、その段差の 生じ方から、主働破壊や受働破壊の痕跡ではなく、 単に構造物に対して背面土のみが不等沈下した影 響であると見られる。粘性土の圧縮性が低い Case1と、さらに盛土荷重が小さいCase2では、 Case3に比べて模型地盤の表面および内部の残留 変位量が小さかったものの、変形モードに有意な 差異は認められなかった。

図・4 フーチングの水平変位と遠心加速度の関係

→ 後列杭 → 甲列杭 → 町列杭 図・6 75G到達直後における杭の曲げモーメント分布 図-4に、フーチング下面位置における水平変位 (模型スケール)と、遠心加速度の推移を示す。 いずれのケースも、水平変位は、遠心加速度が 75Gに達するまでの間に発生し、その後の圧密進 行過程~遠心力の除荷過程における累積量は小さ い。この傾向は、たて壁の傾斜角や杭の曲げモー メントについても同様であった(図-5)。また、 75G到達時における基礎の変位は、盛土荷重が大 きく粘性土が軟弱なCase3で最も大きくなった。

図・6に、75G到達直後における杭の曲げモーメ ント分布を示す。いずれのケースについても、後 列杭のモーメント分布の形状からは、粘性土層か らの側圧を直接的に受けていることが分かる。そ の一方で、前列杭と中列杭は前面地盤からの水平 抵抗を得ていることが分かる。ケース間で比較す ると、盛土高が大きいほど、また、粘性土の圧縮 性が高くせん断強度が小さいほど、大きな曲げ モーメントが生じている。

4. 再現解析

4.1 解析手法

本報告では、側方移動により地上部で確認され る橋台変位から地中部の基礎の健全度を評価する ための解析手法を考案し、実験結果の再現解析に より検証した。解析手法の考案にあたっては、以 下の2点を考慮している。

 設計実務で適用できるレベルの解析モデルで あること

地中部の基礎の健全度を評価するためには、本 来、地盤と構造物をそれぞれモデル化した上で、 これらの相互作用をモデル化する必要がある。ま た、側方流動という地盤の大変形や構造物の塑性 化が生じる問題であること、杭の場合には地盤の すり抜けや杭相互の干渉を考慮しなければならな いなど、解析モデルを構築するにあたって多くの 問題を有する。一方で、例えば地盤と構造物の双 方を相互作用も含めてモデル化した3次元有限要 素解析は、モデルの構築や解析の実施に多大な時 間を要すること、入力する情報が多くなるため解 析を実施する設計者により結果が大きくばらつく 可能性があることなどから、一般的な設計実務に 用いる解析手法としては現実的ではない。このた め、設計実務に用いることが可能な、ある程度簡 便な解析手法とする必要がある。

② 地上部で計測される変位を既知のデータとして活用できること

本検討は、地上部で橋台の側方移動が既に生じ てしまった後に、地中部の基礎の損傷状態を解析 的に評価する手法である。すなわち、地上部で計 測することが出来る橋台たて壁の変位や傾斜を既 知のデータとして、その変位・傾斜が生じている ときの地中部の基礎の発生断面力を算出すればよ いため、変状が生じる前の状態から解析するより も容易に結果が得られる。

図-7 2段階解析のイメージ

図-7に、上記の点を考慮して考案した簡便な2 つの解析を組み合わせた解析手法のイメージを示 す。解析では実務での適用性を考慮し、簡便に計 算可能なはり・ばねモデルを用いた応答変位法に よる解析を行うこととした。ただし、応答変位法 を行うには、杭周辺部の地盤変位が必要となるの で、この地盤変位を地上部変位から予測するため に、応答変位法に先立ち、有限要素法(FEM) による地盤変形解析を行う必要がある。そこで、 本報告では、地盤変形解析と応答変位法を組み合 わせた2段階の解析手法を考案した。

地盤変形解析は、実験で得られた地上部の橋台 変位の計測値を再現することを目的として、地盤 剛性をパラメータとして逆解析し、地中部の杭周 辺の地盤変位の予測値を得るものである。

応答変位法による解析は、地盤変形解析で得ら れた地盤変位を入力し、実験で得られた杭の断面 力の計測値を再現することを目的として、地盤ば ねをパラメータとして逆解析を行うものである。

なお、図-7に示した解析手法では、地盤と構造 物の相互作用等を考慮することが出来ないため、 解析的な厳密性はないものの、先述したように、 地上部の計測結果を既知のデータとして活用でき ることから、この程度の簡易なモデルであっても 一定の精度で地中部の状態を評価できるのではな いかと考えた。

以下では、考案した解析手法の適用性等につい て検証するため、先に示した実験結果に対する再 現解析を行った結果について示す。

4.2 地盤変形解析

地盤変形解析では、杭位置における地盤変位分 布を得るため、2次元有限要素法による自重変形 解析により、実験における地上部の水平変位を再 現した。具体的には、橋台たて壁の回転の影響を 排除するために、たて壁下部の水平変位の実験値 に解析値を合わせるようにした。

粘性土層および支持層には、拘束圧依存性を考 慮した線形弾性モデルを適用した。その粘性土層 における弾性係数を、圧密非排水(CU)三軸圧縮 試験で得られた変形係数*E*50を基準に低下させて いき、 たて壁下部の水平変位の実験値と解析値 が一致するような低下剛性を逆解析的に算定した。 ここでは、圧密に伴う粘性土の体積圧縮量を線形 弾性体で表現することは困難であるため、圧密に よる沈下量には着目しないこととした。

背面盛土層は引張応力を発揮することで下部の 粘性土層の変形を阻害しないように配慮し、降伏 基準にMohr-Coulomb 式を、塑性ポテンシャル にDrucker-Prager 式を用いた弾完全塑性モデル (MC/DPモデル)を適用した。なお、地盤変位の 算出を目的とするこのモデルでは橋台躯体および 杭基礎をモデル化していないため、背面土の粘着 力が小さい場合は容易に主働崩壊を生じる結果と なる。そこで、たて壁位置に静止土圧相当の分布 荷重を与えることで背面土に自立性を与えている。

図-8に、地盤変形解析における杭位置の地盤の 水平変位を示す。粘性土層の剛性低下は、実験 ケースによらず、1/10程度と逆算された。また、 水平変位は、実験ケースによらず、粘性土層の上 端から-4m程度の深さで最大変位を示しており、 Case1、2で40cm、Case3で60cm度であった。

図-8 地盤変形解析における杭位置での地盤の水平変位

4.3 応答変位法による解析

応答変位法による解析では、橋台および杭基礎 を模した2次元はり・ばねモデルを用いて、応答 変位法による解析を行った。構造物は弾性のはり 要素としてモデル化した。地盤ばねは水平方向地 盤反力係数と地盤反力度の上限値を与えたバイリ ニアモデルとし、既往の研究50を参考に群杭効果 を考慮した。地盤ばねの一端を杭と接続し、他端 に地盤変形解析で得た変位を強制的に与えること で、杭体の曲げモーメントを求めた。ただし、粘 性土層が背面盛土層の自重による偏差応力により 塑性化している状態を想定し、粘性土層について は水平方向地盤反力係数と地盤反力度の上限値を 低下させることとし、その低下率をパラメータと して解析を行った。

図-9に、Case1を例に杭体の曲げモーメント分 布を示す。粘性土層の地盤ばねを低下させない Case1-1(低下率1.0)は実験結果を大きく超過 しており、Case1-3(低下率0.1)で、実験値と 近似した。この傾向は実験ケースによらず同様で あり、実験結果と近似するのは低下率0.1程度で あった。モーメント分布に着目すると、低下率に よらず杭頭から8m付近で曲げモーメントの符号 が反転している。ただし、杭列毎の曲げモーメン

- 48 -

ト分布は、実験と異なり、差が生じていない。解 析では、3列共に一様の曲げモーメント分布を示 しているのに対し、実験では、後列杭と中前列で 異なる分布を示している。解析において、抵抗に 関しては杭列毎に隣接杭の影響を考慮した水平地 盤ばねを設定しているが、作用に関しても隣接杭 の影響を考慮するなどの改良が必要と考えられる。

図-10に、Case1-3を例に粘性土層における杭 前面に発生した水平地盤反力度の深度分布を示す。 図では杭前面の水平地盤反力度が粘性土層の水平 地盤反力度の上限値に達している。この結果、発 生曲げモーメントは、地盤変形解析で得た強制変 位量に依存しない結果となり、この傾向は実験 ケースによらず同様であった。この結果をうけて 今後は、強制変位が小さく水平地盤反力度が上限 値に達しないようなケースへの適用性について検 討する必要があると考えられる。

5. まとめ

側方移動の影響を受けた橋台基礎の健全度を評 価する手法として、遠心模型実験を行うとともに、

土木研究所構造物メンテナ ンス研究センター 交流研 究員 Kazunori OSHIRO

土木研究所構造物メンテナ ンス研究センター 交流研 究員 Gaku SAKASHITA

実験における地上部の変位計測データを用いて、 簡便な計算モデルである地盤変形解析と応答変位 法を組み合わせた手法により、再現解析を行った。 以下に検証結果を示す。

- ・遠心模型実験では、75G到達直後に橋台の応答 が最大となり、その応答値は盛土荷重、粘性土 の材料特性の影響を受ける結果となった。
- ・地盤変形解析では、粘性土層の剛性を土質試験の1/10とすることで、実験での地上部変位を再現することができた。

・応答変位法では、地盤変形解析で得られた変位 を入力して解析を行ったところ、粘性土層の地盤 ばねを、地盤変形解析の剛性低下率と同様に1/10 とすることにより、実験での曲げモーメント分布 を再現することができた。ただし、曲げモーメン ト分布の杭列による違いなどは再現することはで きなかった。

本報告での評価手法は限られた条件で確認され た知見である。今後さらに検討を重ね、結果を蓄 積することで、軟弱粘性土の低下剛性の定量的な 評価に繋げるとともに、解析の再現性を改善し、 健全度評価の汎用性および推定精度の向上を図っ ていきたい。

参考文献

- 日本道路協会:道路橋示方書Ⅳ下部構造編・同解 説、2012
- 1 橋台の側方移動対策ガイドライン策定に関する検討 (その2)、土木研究所資料第4174号、2010.6
- 3) 日本道路協会:杭基礎設計施工便覧、2015
- 4) 偏載荷重による構造物の水平移動に関する調査、土 木研究所資料第1150号、1976.7
- 5) 白戸真大、野々村佳哲、福井次郎:動的解析におけ る群杭のモデル化に関する検討、地震工学研究発表 会講演論文集、E-84、2005

土木研究所地質・地盤研究 グループ土質・振動チーム 研究員、(併)構造物メン テナンス研究センター 研 究員 Shunsuke TANIMOTO

七澤利明

土木研究所構造物メンテナ ンス研究センター 上席研 究員 Toshiaki NANAZAWA