·般報文

実河川における流砂の水理とその計測技術

萬矢敦啓・小関博司・山本 晶

1. はじめに

流砂の水理学に関連する基本的な考え方は、 1960年から1980年代にかけて実験水路を通して 現象が解明され、モデル化されてきた。これらの 知見はすでに教科書的な知見でもあると同時に、 例えば現在でも平面二次元河床変動計算などに実 装され、河道の設計等に使用されている。

一方、近年の新技術を用いた観測手法の発達は 目覚ましい。特に音波、電波に関わらず波の分析 技術の貢献が大きい。例えばドップラー効果を用 いた流速の計測、波の減衰量を活用した濃度計測、 照射距離の計測等、活用事例は枚挙にいとまがな い。議論から少し外れるが気象レーダもこれにあ たる。分析技術以外にも波の操作に関連する、例 えばフェーズドアレイ技術も大きな貢献をしてい る。河川技術者がこのような技術の進展により大 きな恩恵を受けるものに、河床高の時間変化、流 速分布の三次元計測、ウオッシュロードや浮遊砂 等の微細砂の時空間分布、河床の面的な計測が挙 げられる。このような技術を活用することで「あ たかも実験水路で実験をしているかのように実河 川から情報を得られるようになる」ことが著者ら の主張であり、これまでも検討を進めてきた。ま たこのような技術は河床変動計算の検証や河道内 の土砂通過量を検討するための技術となることが 期待される。

本稿ではこれまで水文チームが執筆してきた複 数の論文を中心に国内外の論文をレビューする形 式で、最新技術を用いた流砂の水理に関する検討 の一例を紹介する。

2. 流砂の水理の概要

図-1は小規模河床波が起きているときの河道の 断面を模式的に示したものである¹⁾。図の茶色線 は河床高を示し、ここでは小規模河床波でいうと $u = q_s$ $u_s = h_s$ $u_s = h_s$ $u_s = h_s$

図-1 河床波一波長内にある土砂輸送形態

 $u: 河川水の流速、<math>q_b$: 掃流砂量、 u^* : 摩擦速度、 u_s : 掃流砂の流速、 h_s : 掃流層厚、 c_s : 微細砂濃度、 c_{sb} : 微細 砂の河床近傍濃度、 q_s : ボイルにより浮遊した微細砂

ころのDuneを模している。青線がそれに対応す る水面形でこれは河床波とは逆位相であり、河床 波の凸部の位置で水面は凹んでいる。

水面と河床の間を流れる流水は河床波の凸部の 部分で最も速くなり、その後河床波の凹部にかけ て急激に広がる。この急拡部の凸部近傍では流線 が剥離し、凹部を少し過ぎたあたりで再付着する。 凹部では逆向きの流れが発生することもある。こ のように流水は河床波の形状の影響を受け、それ ぞれの場所において異なる流速分布を持つことに なる。河床波の波高が大きくなると、凹部内の渦 も大きくなり、それによりエネルギーの消費が大 きくなる。このように消費されたエネルギーが河 床粗度となり、形状抵抗として評価される。

流水の流速分布の違いが河床に働く外力(掃流 カ又は掃流力を速度に換算した摩擦速度:u*)に 変化を与える。この外力は凹部でほぼゼロとなり、 再付着点から徐々に大きくなり、凸部で最大とな る。この外力により砂の流れ(流砂)が掃流状態 となり、これらは厚さをhs(掃流層厚:掃流状態 で動く流砂の厚さ)、流速をus、さらに濃度を考 慮して掃流砂量qbとして換算される。掃流砂量は 掃流力の増加関数であり、凸部で最大となる。

微細砂は掃流力により巻き上がるものと、流れ の不安定性により気象現象でいう竜巻のような現 象として巻き上がるものがある。前者は一般的に は掃流力で巻き上がる微細砂で、芦田・道上によ

Sediment Hydraulics in Actual Rivers and the Hydraulic Observation Technology

る基準面濃度の関係やラウス分布で説明でき、後 者はボイル現象として観察されている。このよう に小規模河床波の一波長内部で起きている現象は 河川工学の一つである流砂の水理学として扱われ ているクラシックな話題であり、掃流砂、浮遊砂、 河床波、流水抵抗等で分類できる。

3. 計測により得られた流砂の水理

3.1 掃流砂量

日本国における河川の多くは掃流砂卓越河川で あり、河道を理解する上で最も重要な土砂輸送形 態の一つである。これまでの計測手法は大きな塵 取りのような採砂器を一定時間川底に沈め、流砂 の量と粒度分布を計測してきた。これらの結果は 同じ水理量であったとしても1~2オーダー異な る結果も散見されている。

音響測深器の代表的な一つである ADCP(Acoustic Doppler Current Profiler)は海洋 技術として開発されたものであるが、河川計測に 適用されて久しい。流量観測という観点から国内 外で観測事例が多く報告されているが、流砂観測 という観点でも他の技術にはない利点がある。そ れはボトムトラック機能(ADCP本体の移動速度 を計測する機能)を用いた掃流層表面の掃流砂速 度の計測である。この考え方を掃流砂観測に最初 に適用したのはRennie (2002)である²⁾。その後、 萬矢ら(2010)が実河川での計測結果を基に鉛直方 向の流速分布から摩擦速度*u**を算定するアルゴリ ズムを開発した³⁾。本手法は、ボトムトラック機 能で*u*sを計測し、算定した*u**から*h*sを算出し、両 者を掛け合わせて流砂量を求めるものである。

国内外でボトムトラック機能が算定するものの 意味に対する考察が報告されているが、それを決 定付ける直接的な検討は上原ら(2018)である。こ こではボトムトラックにより計測された掃流砂速 度と実験水路側面から撮影した映像から算定した 河床近傍の流砂の速度を比較し、これらが概ね正 しいことを示した⁴⁾。小関ら(2017)は北海道開発 局が実施している大規模実験施設(千代田実験水 路)において同手法の改良と検証に成功した⁵⁾。 ここでは沈砂池を掘り、沈砂池内に堆砂する量を マルチナロービームソナーで計測すると共に、流 入土砂をADCPで観測し、両者は等しいことを確 認した。小関らの改良はusからu*を算出するもの

(上図:ADCPで計測した流速値で河道中央の断面図、 下図:マルチビームソナーにより計測した河床の平面図)

で、これは江頭らの式1)を適用している。

掃流砂量を把握するために一般的な手法は、河 床波の計測により得られる。例えば橘田ら(2017) はマルチビームソナー(音響測深器の一つで扇形 に計測する観測機器)、ADCP、GNSS(Global Navigation Satellite System)を搭載した観測船 を用いて計測した結果を報告している6)。具体的 には、小規模河床波の波長及び波高、その時間変 化を丁寧に観測することで得られる。例えば図-2 は千代田実験水路で得られた結果の一つである。 ここでは波長10m程度の河床波が計測されている ことがわかる。ここでは約2分に一度の観測が実 施され、このような結果から画像を動画としてみ ると、あたかも波が動いている様子がわかる。尚、 図-3b)は図-2の下図の中央に線を設け、その線上 における標高値を横軸に線としてプロットして、 順次、異なる時間の結果を縦方向にプロットした ものである。一方で図-3a)はGNSSが計測した水 面形状を用いて図-3b)と同様の図を作成したもの である。図-3a)b)に斜め線を示すが、この勾配が 河床波の移動速度である。両者は明確さに違いは あるものの、ほぼ同様の速度を持つ。また計測の 前半部と後半部で速度に若干の違いがあることが 特徴的である。前述の図-1で示したように河床波 が存在すれば条件によっては水面波も存在するこ とになる。また河床波が動けば水面波も動くこと になるが、図-3はこのような現象を明確に示した ものである。

図-3 a) 水面波及びb) 河床波の時空間図⁶⁾

図・4はADCPで計測した流砂量*qbA*と河床波の 移動速度から算定した流砂量*qbM*の時間変化を示 したものである⁷⁾。実験で設定した水位は計測時 間開始後30分から190分の間に変化してないこと から、この間の平均的な掃流力も同様に変化して いない。しかしながら*qbM*は時間的に大きく変動 している。他方*qbA*はそれほどの時間変化がない。 例えば125分あたりの時間変化をみると、大きく 変化する qbMの間を取るように qbAがある。著者ら は qbAが qbMより合理的であると考えている。

3.2 微細砂量

ADCPが計測する項目の一つに反射強度がある。 これはADCPが発出した音波の減衰量から濁度分 布を算定するものである。複数の手法があるよう であるが橘田らにより開発された手法がある⁸⁾。 この手法はその後日本でも使用実績が高く、橘田 らは設置型のADCPを用いて一年を通した浮遊砂 のフラックスを算定している⁹⁾。一方でOkada et al(2016)はバングラディシュ国ブラマプトラ川で 流量、掃流砂、浮遊砂を同時に観測した。ここで は川幅5kmの河道において、62,766 m³/sの流量、 1.28 m³/sの掃流砂量、16.51 m³/sの浮遊砂量であ ることを示した¹⁰⁾。またGul et al (2018)はADCP による面的な計測を実施し、河床波による凹凸が 存在する領域と平坦河床における微細砂の濃度の 面的な分布を比較した。図-5Bの●は有人船から 観察したボイルの発生位置である。図のコンター の暖色系の色と●の位置が概ね一致していること がわかる11)。すなわち河床の凹凸が鉛直方向の流 速やボイルの発生を引き起こし、高濃度の微細砂 を発生させている。この現象は例えば平面二次元 河床変動計算には実装されていない部分である。

4. まとめ

本報では、河川における流砂の水理の概要を述 べ、最新技術による掃流砂速度、掃流砂量、河床 高、および浮遊砂量の測定例を紹介した。

流砂の水理の概要では流水抵抗、掃流砂、微細 砂の挙動がそれぞれ密接に関連していることを述 べた。最新技術による測定例では最新の観測技術

図・4 ADCPで計測した流砂量qbA(単位幅当りの量)と河床波の移動速度から換算した流砂量qbMの時間変化70

図-5 平坦河床(A)及び河床波(B)が発生する領域 における微細砂の平面分布¹⁰⁾

による測定結果と現在ADCPによる鉛直方向と流 下方向の二次元の流速分布、マルチビームソナー による河床高、およびGNSSによる水面高の測定 結果とこれらの測定結果に基づいた流砂量の解析 結果、ならびにADCPによる浮遊砂の平面分布の 測定結果を紹介した。

掃流砂量の測定結果は、従来の流砂の水理に関 する知見を検証するものであり、複数の方法が整 合することも確認できるものであった。一方、微 細砂の濃度や高濃度の発生位置は既往の二次元河 床変動では説明できないことが明らかになった。

日本国内の多くの河川は全域にわたり流砂系で あり、河川管理等を実施するにあたり流砂を考慮 することが合理的である。しかしながら洪水中の 河床変動や流砂量の実態を把握することは難しい とされてきた。本報で概説したように近年の観測 技術の進化により得られた計測結果は流砂の水理 の観点からも合理性を担保できるようになってき ており、河川管理への適用が進むよう引き続き検 討して参りたい。

参考文献

- 1) 例えば芦田和男、江頭進治、中川一:21世紀の河川工 学、京都大学学術出版会、2008
- Rennie, C, D., et al.: Measurement of bed load velocity using an Acoustic Doppler Current Profiler, J. Hyd. Eng., Vol. 128, No.5, 2002
- 高矢敦啓ら:ADCPを用いた摩擦速度と掃流砂量の算 定手法、水工学論文集、第54巻、pp.1093~1098、 2010
- 4) 上原有稀ら: ADCPで計測したボトムトラック速度を 用いた掃流砂量算定手法に関する実験的研究、土木学 会論文集B1(水工学) Vol.74、No.5、pp.I_631~I_636、 2018
- 5) 小関博司ら: 実河川における掃流砂量と有効摩擦速度 の評価方法、土木学会論文集B1(水工学)、Vol.73、 No.4、pp. I_763-I_768、2017
- 橘田隆史ら:流況河床高同時観測システムの構築と観 測から得られた河床波の挙動、土木学会論文集B1(水 工学)、Vol.73、No.4、pp.I_535~I_540、2017
- Hiroshi Koseki et al.: Measurement of shear velocity and bed load discharge, 2nd International Workshop on Sediment Bypass Tunnels, FP31, pp.1-8, 2017
- 8) 橘田隆史ら: ADCPを応用した河川土砂フラックスの モニタリング手法の研究(I)、第41回環境工学研究 フォーラム講演集、2004
- 9) 橘田隆史ら: ADCPの超音波反射強度を利用した濁度 計測技術について、河川流量観測の新時代第二巻、 pp.49~56、2011
- 10) S. Okada et al.: Comprehensive measurement techniques of water flow, bedload and suspended sediment in large river using Acoustic Doppler Current Profiler, River Sedimentation, Proceedings of 13th International Symposium on River Sedimentation (ISRS), pp.1274-1280, 2016
- 11) A. GUL et al.: Analysis of bedform and boil based on observations in Brahmaputra river, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 74, No. 5, I_925-I_930, 2018

土木研究所水工研究グループ 水文チーム 主任研究員 YOROZUYA Atsuhiro

研究当時 土木研究所水工研究 グループ水文チーム研究員、現 土木研究所企画部研究企画課主 査

土木研究所水工研究グループ 水文チーム YAMAMOTO Akira