UAVに搭載した電波式流速水位計による氾濫流量の推定

1. はじめに

近年頻発する大規模出水により堤防が破堤する ことによる氾濫流が発生している。このような流 れの量を把握することはその後の氾濫域の水位変 化を予測する上で重要である。著者らは、これま で Frequency Modulated Continuous Wave (FMCW)レーダ方式の電波式流速・水位計(以下 「本センサー」という。)の開発を行ってきた¹⁾。 このレーダ方式によって、対象物の移動速度と照 射域までの距離の計測が可能となる。つまり、表 面流速と水位を同時に計測できることを意味する。 本研究は河道内の任意の地点における流量や氾濫 流量をUAVに搭載したセンサーで計測する技術 を構築することを目的としている。

現地計測は十勝川千代田実験水路(以下「千代 田実験水路」という。)で実施した。この実験で は人工的に作成された破堤部から氾濫原に流出す る氾濫流量の計測を行った。破堤中においては破 堤幅、水深が時々刻々と変化する。そのために氾 濫流量を計測するためには、流速計測以外にも計 測断面の設定、水深が必要となる。特に水深の推 定が重要となる。そのために流速・水面波波長と 水深の関係を整理した既往の研究を参考にした。 本研究では流況及び河床高が時々刻々と変化する 状況における水深・流量の推定を行い、それら推 定値に対する精度検証を行った。

2. 観測手法及び観測条件

2.1 計測機器の構成と観測手法の概要

図-1は観測機器の構成を示す。UAVに搭載する ものは本センサー、トータルステーション(TS)の プリズム、ビデオカメラである。センサーは UAVの水平に対して45度の方向に取り付け、電 波方向の河川水の速度*V*R及び本センサーから水 面までの斜距離*R*を測定する。

これらの機器を組み合わせて① 表面流速 Vo

萬矢敦啓・小関博司

(本センサー)、②氾濫流の水位*H*(TS及び本セン サー)、③水面波の波長*L*(画像及び本センサー)、 ④ 波の進行方向を計測する。

②に関しては、堤防にTSを設置し、搭載した プリズムの位置を把握することで、精度の高い UAVの位置情報を得る。本センサーから得られ たR値を組み合わせることでHを得る。③④に関 しては、ビデオカメラを本センサーと同じ方向に 向け照射域付近で発生する水面波の波長及び波の 進行方向を計測する。またこれらの情報からPIV 解析を実施することが可能で、流向、流速を副産 物的に得ることができる。

上述の①及び③から水深を算定し、水深と①か ら流量を得ることになる。また④は水深算定の判 断に重要な項目となる。

2.2 電波式流速水位計の計測原理

センサーは周波数24.05~24.25 GHzを利用している。距離に応じて二つの周波数*f*₁、 *f*₂が選択され、式(1)を用いて斜距離*R*が算定される。

$$R = \frac{(\theta_1 - \theta_2) \cdot C}{4\pi (f_2 - f_1)} \tag{1}$$

Cは光速、 θ_{I} と θ_{2} は各周波数の位相である。斜距 離方向の速度 V_{R} は選択された周波数のうち一つ の f_{i} を用いて式(2)より算定される。

図-1 機器の構成

Estimation of Flood Flow Discharge with a RADAR Technique Equipped on UAV

図・2 千代田実験水路における第三回観測時の流況と設定した照射位置(S#)と区分線(破線)

$$V_{R} = \frac{f_{di} \cdot C}{2f_{i}} \tag{2}$$

 f_{di} は f_i におけるドップラー信号である。本計 測原理の詳細は参考文献を参照されたい¹⁾。

2.3 水深推定法

水深を推定するために、山田ら²⁾とYalin & Bishop³⁾の成果を参考にした。山田ら²⁾は微小振 幅波理論を基礎に、不規則河床波上の水面波の波 数とフルード数*Fr*を関連付ける式(3)を導出し た。また、実験結果と比較して、適用可能なフ ルード数が0.6以下であることを示した。

$$Fr^{2} = \frac{1}{k_{0}h} \tanh(k_{0}h)$$
(3)
$$k_{0} = \frac{2\pi}{L}, \quad Fr = \frac{U}{\sqrt{gh}}$$

ここに、Lは波長、Uは平均流速、hは水深、g は重力加速度である。Uは流向方向の平均流速で あるため流速補正係数を考慮し、計測された流速 を断面平均流速に変更する必要がある。式(3)に 計測されたU及びLを代入することでhを得る。

Yalin & Bishop ³⁾は砂堆の発達時間に関する研 究において、実験結果を再現する波長水深比が式 (4)で表されることを確認した。

$$L = 2\pi \cdot h \tag{4}$$

同様に計測されたLを用いてhを得る。

なお、本研究では水面波と河床波の波長は等し いという仮定をおいている。

2.4 流況

図-2は対象とした流況の一つであり、破堤数時 間後の堤防と氾濫流の状況を示したものである。 破堤前は図の下にある水路にのみ流路があったが、 図の中央にある堤防に水が乗り上げ、破堤し、図 の上の氾濫源に氾濫流が広がった。

このような氾濫流の流況は堤防の破堤幅が広が るにつれ大きく変化する。このような条件におい ては破堤幅や流況に応じた計測断面の決定が重要 となる。図はこの流況における照射位置をS1~4、 区分線を破線で、流向を矢羽根で示している。な お区分数は破堤幅の広さ、流況に応じて変化する。 後述するように第一回、第二回の観測時には区分 数が異なる。 Voiは流量を算定するために必要な 流速でこれは堤防ラインと直行する成分の流速で ある。これを計測するためにUAVの向きはVoiと 並行になるように調整する必要がある。Lshortは 水面波の進行方向、LflowはPIVで観測した流向方 向の波長である。また Vaは流向方向の流速であ る。ここで指定される照射位置は破堤幅や流況に 応じて決定されている。例えばUAVの映像から 図のS1より上流側は流速がない領域(死水域)であ ることが理解できたため計測が行われていない。 なお2.3で示した水深推定法では、Lshort及びVdを 採用している。

2.5 実験水路の流量と氾濫流量

図-3に水路内の流量の時間変化を示す。流量は 2箇所で計測されている。それらは実験水路の上

図-3 流量の時系列変化と観測時刻

観測番号		1	2					3			
区分番号		1	1	2	3	4	5	1	2	3	4
区分流速 Voi	本計測	-	0.43	0.94	0.94	0.73	1.36	1.18	1.24	0.97	1.01
(m/s)	PIV	-	0.32	0.53	1.19	1.42	1.23	0.50	1.24	1.14	1.84
流向 θ	本計測	-	71	70.2	65.4	64.3	63.4	72.6	65.6	74.3	61.8
(度)	PIV	-	53.8	70.1	60.8	60.9	61.8	67.4	64	68.2	59.7
波長 L	本計測	-	5.11	7.49	5.31	5.38	5.27	7.23	4.96	5.44	6.23
(m)	PIV	-	1.55	3.44	3.82	3.71	4.63	4.84	3.81	4.72	6.03
流速Vd	本計測	-	1.32	2.79	2.26	1.69	3.03	3.95	3.01	3.58	2.14
(m/s)	PIV	-	0.54	1.56	2.44	2.93	2.60	1.31	2.84	3.08	3.66
区分幅 B(m)		10	7.27	8.46	10.43	10.60	10.14	10	10	10	10
計測水位 (m)		15.12	15.52	15.15	15.22	15.47	15.53	14.94	15.31	15.45	15.37
氾濫流量 (m³/s):図-3		29.9	43.5					47.2			
山田ら	h_i (m)	-	0.13	0.62	0.40	0.21	0.94	NAN	0.98	NAN	0.35
(1984)(式(3))	$q_i (m^3/s)$	-	0.34	4.22	3.36	1.41	10.99	NAN	10.42	NAN	3.02
	$Q (m^{3/s})$	-	20.3				13.4(NAN 以外の合計)				
Yalin &	h_i (m)	-	0.81	1.19	0.84	0.86	0.84	1.15	0.79	0.87	0.99
Bishop	$q_i (m^3/s)$	-	2.16	8.06	7.04	5.63	9.83	11.54	8.35	7.12	8.52
(1977)(式(4))	-	32.7					35.5				

表-1 計測結果と推定流量値

流端に位置する堰と破堤部より下流側の測線であ り、それらを堰流量、水路下流流量とする。この 両者の間には流量の出入りがゼロであるため二つ を引いた値を氾濫流量と定義した。

本実験では12時30分頃から水路下流流量が減 少し始め、その後、急激に減少する。それととも に氾濫流量は急激に増加し、13時頃から増加が 緩やかになり始めている。これは破堤幅が平衡状 態に近いことを示唆している。この間、堰流量は 徐々に増加するものの、ほぼ一定値であることか ら実験水路には定常的な流況が維持されていたこ とがわかる。UAVによる観測は合計3回行われ、 第一回が12時44分、第二回は13時29分、第三回 は14時11分であり、図-3に黄線で示している。 一回の観測に要する時間は一つの区分断面につき 1分間計測を行い、合計で離陸から着陸まで10分 程度の時間を要している。

2.6 氾濫流量値の算定方法と計測手順

氾濫流量を以下に定義して式(5)で示す。

$$Q = \sum q_i = \sum \alpha_i \cdot V_{0i} \cdot h_i \cdot B_i \tag{5}$$

Qは氾濫流量、*qi*は区分流量、*ai*は更正係数、*hi* は水深、*Bi*は区分幅、*i*は区分番号である。ここ では流量値を算定するための計測の手順を示す。

- (1) UAVのカメラによる現状を把握する。ここでは特に氾濫流の全体像の把握をすることを目的とし、一枚の画角で氾濫状況全体が入るような高度でUAVを操作することが望ましい。
- (2) (1)で得られた流況を基に区分断面及びその数 を決定する。ここでは死水域の設定も含める。
- (3) 各区分位置における流速 Voi、水位の計測、動 画の撮影を実施する。本実験ではUAVの高さ を水面から5m程度とした。しかしながら動 画でのPIV測定や水面波の波長の把握を考慮 するともう少し高い位置における観測が望ま しい。
- (4) (3)から得られた撮影画像を用いて水面波の波長と流向を算定する。
- (5) 計測流速、波長を用いて式(3)及び式(4)から 水深を推定する。
- (6) 式(5)を用いて流量値を得る。

3. 計測結果

表-1は計測結果と各方法で推定された流量を示 している。表の上段はセンサーやPIV解析によっ て得られた値を示している。表中の氾濫流量は図 -3から得た値である。下段は各区分の推定水深と 流量、総流量を示している。 区分流速は9区分中5区分において、PIVと10% 以内の差の流速を示している。他4区分において はPIVと比べて倍半分の流速を示している。これ らの差は、計測原理による違いと流況が関係して いると考える。つまり、UAVに搭載した本セン サーは水表面の移動速度、一方のPIVは水表面の トレーサーの移動速度を計測している。破堤部に おいては流れが複雑になるため、水深平均流速を 得る目的において代表流速の最適な計測方法を選 択する必要がある。またそれぞれの流速補正係数 の考え方が異なる可能性がある。これらに対して 今後、表面流速とADCPを用いた鉛直方向の流速 分布を比較して検討する必要がある。

流向は、どの区分においてもPIVと同じ流向を 示している。一方、波長は第三回の第4区分を除 いて、PIVの結果と50cm以上の差がある。画像 解析による流向の計測結果の精度が良ければ波長 の精度も良いと考えられるが、そうではなかった。 原因は2つあると考えられる。1つ目は画像解析 では水面を平坦と仮定したが、実際は平坦でな かった可能性が高いこと。もう1つは、動画の俯 角が45度であるため、水面波の峰の詳細な平面 位置の特定は難しいことである。従って、この分 析のために高度を上げて俯角を大きくした動画撮 影に専念することが望ましい。

氾濫流量は第一回で29.9m³/s、第二回で 43.5m³/s、第三回で47.2m³/sであった。これらの 値は堰流量とADCP観測流量の差分であるため、 信頼度の高いデータである。式(3)による流量 は第二回において氾濫流量の半分程度であり、第 三回においては流速値が大きいために水深を算定 できない区分があった。式(4)による結果のみ が第二、三回いずれの観測においても氾濫流量と 同じ規模の流量を算定した。これらの流量の結果 は、各式で推定された水深だけではなく、流向や 波長の算定結果や更正係数の選択等の影響を大き く受けている可能性もある。

4. まとめ

本研究をまとめると、次のとおりである。

- (1)河床変動が活発な流況における流量観測手法 を試行した。流量観測の要素は2つで、一つ は水表面の流況計測、もう一つは土砂水理学 の知見を用いた水深推定である。水表面の流 況計測において計測された項目は、流速、水 位、河床波由来の水面波の波長である。これ らは電波技術と画像解析を組み合わせて行わ れた。
- (2)計測は破堤中の河床変動が活発な流況に対し て行われており、時々刻々破堤幅や水深が変 化する流況であった。
- (3)水深推定において、2つの式による水深が比較された。式(4)による結果が最も真値に近かったが、それでも真値の75%程度の値であった。この差の要因として、更正係数や流向、波長算定における不確実性等が考えられる。

謝 辞

北海道開発局帯広開発建設部には千代田実験水 路における観測場所とPIV解析の結果等様々な観 測データを提供して頂いた。ここに記して感謝申 し上げます。

参考文献

- 萬矢敦啓、墳原学、工藤俊、小関博司、笛田俊治:
 電波式流速水位計の開発、土木学会論文集G(環境)、Vol.72、No.5、pp.I305~I311、2016
- 山田正、池内正幸、堀江良徳:不規則底面をもつ開 水路流れに関する研究、第28回水理講演会論文集、 pp.149~155、1984
- 3) Yalin, M.S. and Bishop, C.T. : On the physical modeling of dunes, Proc. 17th Cong. IAHR, 1. 1977

土木研究所水工研究グ ループ水文チーム 主任 研究員 YOROZUYA Atsuhiro

研究当時 土木研究所水 工研究グループ水文チー ム研究員、現 土木研究 所企画部研究企画課主査 KOSEKI Hiroshi