山岳トンネル工法で用いられる 先受工の数値解析モデルに関する一考察

佐々木 亨・巽 義知・日下 敦

1. はじめに

山岳トンネル工法は日本で一般的に用いられる トンネル建設工法の一つであり、近年では山岳部 のみならず都市部においても採用されている。山 岳トンネル工法では、都市部や不良地山において トンネル掘削時に地山の安定性が確保できない場 合に、天端安定等を目的とした補助工法が用いら れることがある。補助工法の設計は過去の事例を 参考に行うことが一般的だが、数値解析により各 種補助工法の効果について比較・検討を行う事例 も多くみられる^{例えば、1)}。しかし、一部の工法に おいては、解析におけるモデル化手法が複数存在 し、モデル化の手法ごとに結果に差異が生じる一 方で、どのモデル化手法が実現象をより正確に再 現できるか詳細に検討した事例は少ない。このよ うな条件下で、補助工法本来の目的とは異なる効 果が数値解析結果として現れることを根拠に、非 合理的な支保構造を適用してしまう場合がある。 複数のモデル化手法が存在する場合において、モ デル化手法ごとに効果・特徴を整理しておくこと は、解析結果から適切な支保構造を選定する上で 重要である。

本報告では、近年適用事例が増加している長尺 鋼管先受工(以下「先受工」という。)に着目し、 モデル化手法および打設範囲を変えた3次元数値 解析を行い、モデル化手法や打設範囲の違いが支 保構造の変形挙動および応力状態の解析結果に与 える影響を把握した結果について報告する。

2. 数値解析の概要

2.1 解析の諸条件

本解析は、トンネルの挙動および先受工の効果 について3次元的に把握するために、3次元有限 差分法解析コードを用いて行った。

解析領域は境界面からの影響が掘削面に及ばな いように、上下左右すべてにおいて掘削断面から

 \triangleleft 5D 41 ⊲lîi 5D 5D \triangleleft \triangleleft 5D |||⊳ $\mathbb{Z}^{\mathbb{Z}}$ Δ Δ ⇔·変位可能方向

図-1 境界条件概念図

表·1 解析物性值

		構成要素	ヤング係数 (MPa)	ポアソン比	断面二次 モーメント Iy (m ⁴)	断面二次 モーメント Iz (m ⁴)
地山		Solid	150	0.35	-	-
鋼アーチ支保工 (HH-200×201 ×9×12)		Beam	205,000	0.20	4.7×10 ⁻⁵	1.6×10 ⁻⁵
吹付け コンクリート (t=250) (σck=36kN/mm2)		Solid	4,000	0.20	-	-
先受工 Ф114.3mm 鋼管	a)	Solidの場合	2,266	0.35	-	-
	b)	Beamの場合	210,000	0.20	3.0×10 ⁻⁶	3.0×10 ⁻⁶

5D(トンネル直径=D)確保し、境界条件は図-1 に示すように、上面は拘束なし、側面は鉛直方向 の変位のみ可能、底面は完全固定とした。トンネ ル形状は実際に施工された2車線道路トンネルの 形状を参考に設定した。

地山の構成則は線形弾性とし、物性値は地山等 級DII相当を想定し、表-1に示す値に設定した。

また、掘削解析を行う前の初期応力状態として、 地山のみで自重解析を行うことで土被りに対応し た応力をモデルに作用させた。

2.2 解析ケース・先受工のモデル化

解析ケースは、先受工のモデル化手法と打設範 囲の組み合わせにより、表-2に示す全5ケースと した。

先受工のモデル化手法は一般的に多く用いられ ている以下の2つのモデル化手法とした。両モデ ル化手法の概略図を図-2に示す。

(1) ソリッド要素を用いてモデル化

先受け鋼管および改良地山の断面積の比と剛性 の比から改良領域の等価剛性を算出し、改良範囲 の先受け鋼管と改良地山を等価な剛性を持つもの

A Study on 3D Numerical Simulation Methods for Forepiles used for Conventional Tunneling

としてソリッド要素の弾性係数に反映してモデル 化する手法

(2) ビーム要素を用いてモデル化

先受け鋼管のみをビーム要素で1本ずつモデル 化する手法

なお、先受工による改良範囲の地山物性値を注 入材による地山改良効果を考慮した値に変更して 解析を行う場合もあるが、実際の施工における改 良範囲や改良後の剛性が不明であることから、先 受工をモデル化した全ケースで注入材による地山 改良効果は見込まないこととした。

打設範囲は標準的に用いられる120°(両肩か ら天端)と打設範囲を側部まで拡大した180° (S.L.から天端)の2パターンとした。

想定した先受工の縦断方向の打設方法について 図·3に示す。先受け鋼管はΦ114.3mm、部材厚t =6.0mm、長さL=12.0mとし、縦断方向の打設 角度はトンネル軸方向に対し10°、横断方向は 8°ごとに1本の間隔で打設(120°で31本、 180°で47本)することを想定した。打設ピッチ は9m、前シフトとのラップ長は3mとし、トンネ ル断面内からの打設を想定した。実際の施工では トンネル断面内にあり、支保工に接触するロ元か ら3mの鋼管を切断していることに合わせ、先受 工をビーム要素でモデル化する場合は、口元から 3mのビーム要素を削除した。一方、先受工をソ リッド要素でモデル化するケースについては、上 記の前シフトとのラップを再現することは困難な ため、1シフトにつき9mずつ(最初のシフトのみ 12m)、前シフトの続きから一連の改良体をモデ ル化することとした。

2.3 支保構造のモデル化

支保構造は鋼アーチ支保工をビーム要素、吹付 けコンクリートをソリッド要素でモデル化した。 本解析において、ロックボルトはモデル作成の簡 略化のために省略することとした。

2.4 解析手順

掘削方式は上半先進ベンチカット工法とし、初 めに12mの先受工をモデル化し、上半を1mずつ 逐次掘削した。その後、9m掘削した時点で次シ フトの先受工を設置し、再度逐次掘削した。ベン チ長は30mとし、上半と下半の距離が30m確保で きるように掘削を進めた。支保工は上下半ともに 切羽後方1mの位置まで逐次設置した。以上の流

図-3 先受工の打設概念図(縦断図) れで上下半が貫通するまで掘削解析を行った。

3. 解析結果

本研究では、先受工のモデル化手法および打設 範囲の違いが数値解析におけるトンネルの変形挙 動および支保工の応力状態に与える影響について 検討した。

3.1 先受エがトンネルの変形挙動へ与える影響

トンネルの変形挙動に与える影響については、 天端沈下(図・1①)および上半内空変位(図・1 ②)に関し、①先行変位(掘削前をゼロとし切羽 が計測位置に到達するまでの変位)、②切羽到達 後の変位(切羽到達から収束までの変位量)、お よび③最終変位(①+②)に着目して確認した。 図・4は各ケースの天端沈下と内空変位の推移を、 図・5は天端沈下と内空変位の各変位について、先 受工を打設しないCase1と先受工を打設した Case2~5の差を示し、先受工による変位量の変 化(+は変位量の増加を、・は変位量の減少、すな わち抑制を示す。)を示している。

3.1.1 先行変位について

図-5より、天端沈下の先行変位量の変化は、先

受工をソリッド要素でモデル化したCase2、3と ビーム要素でモデル化したCase4、5ともに Case1と比べて-1.7~0.4mmの増減であり、モデ ル化手法・打設範囲による明確な差は見られない。

内空変位の先行変位量の変化は、先受エをソ リッド要素でモデル化したCase2、3では-2.2mm、 -9.7mmであるのに対し、ビーム要素でモデル化 したCase4、5では-0.2mm、-2.2mmである。打 設範囲が同じケース(Case2とCase4、Case3と Case5)で比較すると、ソリッド要素でモデル化 した方が、抑制量が大きい。また、モデル化手法 が同じケースで比較すると、打設範囲が120°で あるCase2、4に比べ、打設範囲が180°である Case3、5のほうが、それぞれ抑制量が大きい。

3.1.2 切羽通過後の変位について

図-5より、切羽通過後の天端沈下量の変化は、 先受工をソリッド要素でモデル化したCase2、3 では-6.1mm、-12.5mmと沈下量が抑制されてい るのに対し、ビーム要素でモデル化したCase4、 5では1.7mm、1.5mmと沈下量が増加した。

切羽通過後の内空変位量の変化は、先受工をソ リッド要素でモデル化したCase2、3では-3.3mm、 -8.3mmと内空側への変位が抑制されるのに対し、 ビーム要素でモデル化したCase4、5では、-0.8mm、0.3mmと先受工がないCase1とほぼ変 わらない結果となった。

また、打設範囲の違いに着目すると、先受工を ソリッド要素でモデル化したCase2、3では、天 端沈下量、内空変位ともに、打設範囲180°の Case3のほうが、抑制量が大きい結果となった。

3.1.3 最終変位について

図・4、図・5より、天端沈下の最終変位量の変化 は、先受工をソリッド要素でモデル化したCase2、 3では・5.7mm、・13.2mmと最終沈下量が抑制さ れるのに対し、先受工をビーム要素でモデル化し たCase4、5では0.1mm、・0.2mmとほぼ変わらな い結果となった。また、先受工をソリッド要素で モデル化した場合、先受工を打設範囲120°で打 設したCase2に比べ、180°打設したCase3のほ うが、抑制量が大きい結果となった。

内空変位の最終変位量の変化に関しても、天端 沈下と同様に先受工をソリッド要素でモデル化し たCase2、3は-5.5mm、-18.0mmは最終変位量が 抑制されるのに対し、ビーム要素でモデル化した

Case4、5では変わらない結果となった。また、 打設範囲の違いに着目すると、先受工をソリッド 要素でモデル化したCase2、3では、天端沈下量、 内空変位ともに、打設範囲180°のCase3のほう が、抑制量が大きい結果となった。

3.2 支保工に対する影響について

支保工に発生する応力は、先受工を打設した際 に最も影響を受けると考えられる先受工と鋼アー チ支保工が接する断面(以下「支点」という。) での吹付コンクリートの軸応力と鋼アーチ支保工 の軸力で検討した。

3.2.1 吹付けコンクリート軸応力

図-6に支点付近の吹付けコンクリートに発生する軸応力を示す。横軸はS.L.=0°、天端=90°した時の角度を、縦軸は軸応力の値を示している。

図-6により、先受工をビーム要素でモデル化した Case4、5 (図中赤線)では、先受工がない Case1よりも軸応力は増加する傾向となった。先受工をソリッド要素でモデル化した Case2、3 (図中青線)では、打設範囲が180°の Case3は全体的に軸応力が軽減されているのに対し、打設範囲が120°である Case2は先受工が打設されている範囲(90°~30°)付近の90°~50°においては軽減されるが、先受工の打設範囲外付近の0

~40°では増加する結果となった。

3.2.2 鋼アーチ支保工の軸力

図・7に鋼アーチ支保工に発生する軸力を示す。 鋼アーチ支保工に発生する軸力は、先受工をソ リッド要素でモデル化したCase2、3では、先受 工がないCase1に比べ軸力が軽減される。一方、 先受工をビーム要素でモデル化したCase4、5で はCase1に比べて軸力が増加する。打設範囲に着 目すると、先受工をソリッド要素でモデル化した ケースでは、打設範囲が180°であるCase3では 全体的に軸力が軽減されるのに対し、打設範囲が 120°であるCase2では、先受工の打設範囲(90 ~30°)付近のみ軽減される結果となった。

3.3 解析結果の考察

先受工をソリッド要素でモデル化したケースに おいては、天端沈下と内空変位ともに抑制され、 支保工に発生する応力は先受工の打設範囲で軽減 される結果であった。これは、見かけ上、先受工 によりアーチ状の改良体が形成されることで、支 保工が負担する荷重の一部を負担したためと考え られる。しかし、先受工をソリッド要素でモデル 化する手法は、先受工の軸剛性を地山の剛性に等 方的に付与するものであり、トンネル周方向につ いても同様に剛性が高くなる。先受け鋼管の軸方 向の剛性を等方的に地山剛性として付与すること が適切かどうかについては、検証が必要である。

一方、先受工をビーム要素でモデル化したケー スにおいては、変位を抑制する効果は小さく、ま た、支保工に発生する応力は先受工がない場合よ りも増加する結果であった。このことから、先受 工をビーム要素でモデル化した場合には、先受工 をソリッド要素でモデル化した場合のような支保 効果は生じず、先受工が最終的なトンネルの変形 挙動に寄与しないこと、および支保工の応力を抑 制する効果はないことが考えられる。先受工によ

るトンネルの最終変形への影響は、実施工につい ても不明確なため、今後検討が必要である。

なお、今回解析に用いた両モデル化手法とも、 注入材による地山改良効果は考慮していないが、 実際の地山における改良効果も十分に検証されて いないため、数値解析上の物性値への反映方法と しても不明確な部分が多く、今後も検討が必要で ある。

4. まとめ

本解析では、先受工のモデル化手法の特徴を整 理した。同一の条件を対象としながらも、先受工 のモデル化手法よって、変位抑制効果や支保工に 発生する応力へ与える影響に差異が生じることが 明らかとなった。ただし、このような見かけ上の 支保効果は実現象を再現したものかは十分に検証 されていない。これらの効果は本来の補助工法の 目的とは異なる効果であり、実際の施工において も同様の効果があるかどうかについては今後、実 計測結果も踏まえて検討し、先受工の効果につい て数値解析手法を用いて検討する際の留意事項と して整理していきたい。

参考文献

 ジオフロンテ研究会補助工法WG:補助工法の選定上の要点・トンネル切羽の天端補強、鏡部補強、 脚部補強の総合的な活用のために・、2005.11.30

土木研究所道路技術研究グループ トンネルチーム 研究員 SASAKI Toru

土木研究所道路技術研究グルーフ トンネルチーム 主任研究員 TATSUMI Yoshitomo

土木研究所道路技術研究グループ トンネルチーム 上席研究員 KUSAKA Atsushi