-般報文

フィルダム内部のひび割れ調査に有効な 電気探査用注入材料の検討

小堀俊秀·金銅将史

1. はじめに

フィルダムは土構造物の中でも貯水構造物とし て高い安全性が求められる。そのため、地震時に もすべりを生じない強度と必要な遮水性が確保さ れるよう慎重な材料選定や堤体形状の設計が行わ れ、施工時には地震時の強度低下を防ぐ上で重要 な意味を持つ十分な締固めが適切な品質管理の下 行われる。また、国内の供用中のダムでは、各種 計測を含む日常の点検に加え、地震発生時には臨 時点検も行われるなど入念な安全管理が行われて いる。しかしながら、ロックフィルダムのコア ゾーンや土質材料からなるアースダムでは、強い 揺れを受けた際の応答が大きい堤体頂部に引張領 域が生じることがあり、このことによると見られ る天端付近でのひび割れ発生事例1)がある。この ような場合、被災直後のダムの安全確認やその後 の補修計画の検討上、ひび割れの範囲をその深度 も含めて把握する必要がある。ひび割れ深度の把 握方法としては、ひび割れ内に石灰水を注入した 後トレンチ調査を行い、固化した石灰の先端位置 を確認する方法1)などがある。しかし、ひび割れ の延長が広範囲に及ぶなどトレンチ掘削による全 面的調査が困難な場合もあり、トレンチ調査を利 用しない効率的な調査法が求められている。

ひび割れ内に導電性の液体を注入し、液体と堤 体材料との比抵抗差からひび割れ範囲を推定する 電気探査(比抵抗法)は、このような場合に有効 な非破壊調査法の1つと考えられる。ひび割れ内 への注入材料として、フィルダムのひび割れ調査 に関する既往研究では塩水²⁰や石灰水³⁰を用いた 事例がある。しかし、塩水はひび割れ先端周辺へ の堤体材料への浸透がひび割れ深度の推定に影響 を及ぼす可能性が指摘されており、石灰水を用い た研究ではこれまでのところ幅15mm程度のひび 割れが対象となっている。そこで、幅数mm程度 のより微細なひび割れも対象に、電気探査を用い たひび割れ深度調査に適した注入材料について検 討し、屋外地盤での電気探査試験により、適用に 向けた基礎的な検討を実施した。

2. ひび割れ注入材料の検討

2.1 注入材料とその配合

注入材料への要求性能として、①圧力を加えず ともひび割れ内に充填できる性能(自己充填性能) が高い、②周辺に浸透しにくい、③堤体(土質) 材料との比抵抗差が大きい、の3項目を設定した。 このうち①と②の要求を満たすために、トレンチ 掘削でのひび割れ調査で実績のある炭酸カルシウ ムを主成分する市販の空隙自己充填材4)をもとに、 堤体材料との剛性差を抑えるためそのセメント分 を減じたものをベース材とした。③の要求を満た すために、フィルダムのコア(遮水ゾーン)の比 抵抗(60~160Ωm程度⁵⁾)と差が出るよう、上 記ベース材に導電性材料として、金属粉(鉄粉) または水溶性の塩化カルシウム粉末を添加材とし て加えることとした(図-1)。

2.2 配合試験

上記の材料利用を行う条件のもと、前述の要求 性能の面から注入材料の最適な配合を把握するた め、ベース材に対する添加材の添加量を変化させ た配合試験を実施した。試験ケースは、図-1(a) のベース材に対し、金属粉(鉄粉)については炭 酸カルシウムに対する置換率(同図(b)の@/(@+

図・1 注入材料の配合イメージ

Study on Filler Materials Effective for Electrical Resistivity Survey to Investigate Cracks in Embankment Dams

(d))、塩化カルシウムについてはその水溶液(同 図(c)の(e) としての濃度がそれぞれ異なる複数 のケースを設定した。配合試験では、まず配合後 のフレッシュ状態における単位体積重量の測定及 びフロー試験(NEXCO試験法のに準じたフロー 値及びP漏斗流下時間の計測)による流動性の把 握を行い、フロー試験でのフロー値がベース材と 同等となるよう、混和剤等(図-1b)の量を調整 した。次に、各配合の材料について、比抵抗を測 定した。比抵抗の測定は、図-2に示すようにプラ スチックのケースに各配合の材料を入れ、深度方 向の比抵抗分布測定に利用される手法の1つであ る4極法(ウェンナー法) 7により、フロー試験 の直後、30分後、1時間後、2時間後及び24時間 後の計5回、行った。なお、比較のため、フィル ダム等でのひび割れ調査で実績のある塩水及び石 灰水についても同様の測定を実施した。

配合試験結果を表-1に示す。比抵抗の測定結果 は、配合後24時間経過後について示している。 これらの結果より、今回作成した材料の中では、 ベース材に塩化カルシウム40%(飽和)水溶液を

図-2 配合試験における比抵抗の計測状況

加えた材料が、堤体材料との比抵抗差が大きいこ とや所定の流動性を有し、単位体積重量もベース 材より大きいため自己充填性の面でも優れている と考えられること、また、融雪剤等として比較的 入手も容易なことから、注入材料として最も適し ていると判断した。

3. 屋外地盤での電気探査試験

配合試験で選定した、ベース材に塩化カルシウ ム40%水溶液等を加えた材料(以下、塩化カルシ ウム添加注入材)を注入材料として用いた場合の 電気探査(比抵抗法)によるひび割れ検出性能を 確認するため、屋外土質地盤に模擬ひび割れを造 成し、電気探査試験(比抵抗法)を実施した。な お、試験箇所は原地盤上に過去に盛土された箇所 で、換算N値は3程度と実ダムでの測定例(中央 コア型アースフィルダムの不透水ゾーンで概ねN 値15程度8) より小さい値であった。

3.1 模擬ひび割れの造成

模擬ひび割れは、地盤を開削し、鉛直にプレー ト(長さ1.0m、深さ50cm程度)を設置し、プ レート周囲を埋め戻し転圧した後に、プレートを 引抜くことで造成した。模擬ひび割れの幅は、既 往文献³⁾では15mmのひび割れを電気探査での検 出対象とした例があるが、ひび割れ先端付近では より幅が狭いものとなっていることを考慮し、 10mm、4mm及び2mm(上記手法で造成可能な 最小幅)の3種類とした。なお、模擬ひび割れを 造成した土質地盤の比抵抗は、試験対象となる表

図·2 配合試験における比抵抗の計測状況 表·1 配合試験結果							
注入材			基本物性試験			配合 24H 後	
添加材等	配合条件		単位体積 重量(g/cm ³)	フロー値 (mm)	P 漏斗流下 時間(sec)	比抵抗 (Ω m)	選定
ベース材 -		-	1.84	395	10.29	3.91	
金属粉添加	重量置換割合 (%)	40	1.98	413	8.81	2.65	
		50	2.01	385	8.60	2.74	
		60	2.11	360	9.61	2.78	
塩化カルシウム (CaCl ₂) 水溶液	濃度 (%)	10	1.86	415	10.66	0.41	
		20	1.91	400	11.69	0.23	
		30	1.95	390	13.50	0.43	
小冶成		40	1.99	405	17.60	0.28	0
	佐八)))))	3.8				0.31	
塩水	塭 숫 涙 皮 (⊮)	10				0.24	
	(/0)	20				0.06	
	石灰置換割合 (消石灰:水)	1:2				4.15	
石灰水		1:3				4.68	
		飽和				1.87	

層部で100~250Ωm程度であった。

3.2 電気探査試験

屋外地盤での電気探査試験は、塩化カルシウム 添加注入材のほか、比較のため、既往文献²⁾で実 績のある塩水についても行った。試験ケースを表 -2、試験の実施状況を図-3にそれぞれ示す。模擬 ひび割れ周辺地盤の比抵抗の測定は、各ケースと も注入材料の注入前、注入直後、1日後の計3回、 模擬ひび割れ直交方向の測線上(電極間隔6cm) で、作業性がよく比抵抗2次元探査で用いられる ことの多い2極法(ポール・ポール法)⁷により 行った。なお、すべての測定を終了した後、模擬 ひび割れ周辺を開削し、注入材料が所定の深さま で注入されていることを確認した(図-4)。

塩化カルシウム添加注入材を用いた場合の模擬 ひび割れ周辺の比抵抗分布の計測結果の例を図-6 及び図-7に示す。図-5は注入1日後の模擬ひび割 れ直交断面内の比抵抗分布、図-7はこのうち模擬 ひび割れ付近の値(ひび割れを挟む横断方向の幅 5cm程度の範囲内の平均値)について、その深さ 方向分布と時間変化を示したものである。図-6に おいて、模擬ひび割れ付近で注入直後以降、比抵 抗の顕著な低下領域が生じているが、比抵抗の低 下が収束する深度は、ひびわれ幅4mmでは55cm、 同2mmでは40cm付近である。この深度をひび割 れ先端位置の推定深度とし、模擬ひび割れ幅が異 なるケースでの推定深度を比較した結果を表-3に

	表・2	電気探査試験	(比抵抗法)	試験ケー	- 7
--	-----	--------	--------	------	-----

	ひび割れ幅	注入材
Case1	1 Omm	ちんちょうちくろう
Case2	4mm	「 塩11. カルンワム 添加 注入 社
Case3	2mm	注入例
Case4	4mm	塩水 (濃度3.8%)

図-3 屋外地盤での電気探査試験実施状況 (模擬ひび割れ幅4mmのケース)

図-4 開削による注入材料の充填状況の確認 (模擬ひび割れ幅2mmのケース)

示す。最もひび割れ幅が小さいケース(2mm) はやや深度が過小推定されているが、幅4mm以 上のひび割れでは、塩化カルシウム添加注入材を 注入材料として使用することで、模擬ひび割れの 先端深さ(開削による確認結果で50~55cm)が ほぼ正確に推定できている。今回は実ダムよりも 締固め度が小さな地盤での試験であったが、開口 ひび割れに対して流動性に富む材料を用いる場合 には締固め度の違いによる影響は余り大きくない ものと思われる。

一方、塩水を用いたケースでは低比抵抗領域が 時間経過とともに深部へ移動し、拡がる様子が認 められた(図-7)。地盤内への浸透によるものと 考えられる。より締固め度の高い実ダムではこの 影響はもう少し小さくなる可能性があるが、比抵 抗法での電気探査に塩水を用いる場合には、測定 のタイミングによりひび割れ深度を過小または過 大に推定する可能性に注意が必要と考えられる。

4. まとめ

フィルダムに生じたひび割れの深度を非破壊で 効率的に調査できるようにするため、電気探査 (比抵抗法)の利用に適したひび割れ内への注入 材料について検討した。自己充填性、周辺への浸 透しにくさ及び土質材料との比抵抗差を考慮し、 室内試験により選定した材料を屋外地盤の模擬ひ び割れに注入して電気探査試験を行ったところ、 今回の基礎的な試験においては幅4mm以上のひ び割れではその深度を良く推定できる結果が得ら れた。今後は、本基礎試験結果を踏まえ、より深 く、より細いひび割れや、ダム堤体の材料特性の 違い等を考慮した検討等、実際のダムに近い環境 での計測について検討を行う必要があると考えて いる。この成果をもとに、当該材料を注入材料と した電気探査を、大規模地震時等の迅速な安全確 認の方法検討に役立たせていきたい。

参考文献

- 国土交通省国土技術政策総合研究所:平成28年 (2016年)熊本地震土木施設被害調査報告、国総研 資料、第967号、pp.135~139、2016
- 中里裕臣、井上敬資、吉迫 宏、堀 俊和:平成23 年(2011年)東北地方太平洋沖地震によるため池 堤体亀裂に対する緊急的な電気探査、農工研技報、 第213号、pp.23~28、2012

表-3	でたで割れ	幅の違い	によ	ろ推	定深度	の比較
1 0			1-0	O IE		2 V / / / + X

	模擬ひび割れ幅		10mm	4mm	2mm
ひび割れ		注入直後	約45cm	約55cm	約40cm
	推定深度	1日後	約50cm	約55cm	約40cm
開削確認結果		約50cm	約55cm	約50cm	

図-7 比抵抗分布の時間経過(塩水との比較)

- 3) 井上敬資、中里裕臣:2次元電気探査による地盤の 亀裂範囲簡易推定手法、農業農村工学会論文集、 No.290、pp.43~53、2014
- 4) 佐々木 隆、小山幸男、宍戸善博、伊藤武志:岩 手・宮城内陸地震による胆沢ダムフィル堤体の被災 復旧概要、ダム工学、Vol.18、No.4、pp.251~262、 2008
- 5) 鈴木浩一、藤井健知、高橋 章:電気探査法による ロックフィルダム初期湛水時の浸透水のモニタリン グ、物理探査、68巻、3号、pp.189~199、2015
- (㈱高速道路総合技術研究所(NEXCO総研):試験 法313 エアモルタル及びエアミルクの試験方法、 2016.8
- 7) 地盤工学会:地盤調査の方法と解説、pp.101~107、 2004.6
- 8) 吉久寧、佐藤信光:アースダム堤体の動的特性に関 する調査・試験について、ダム工学、第20巻、3号、 pp.172~176、2010

国土交通省国土技術政策 総合研究所河川研究部大 規模河川構造物研究室 主任研究官、博士(工 学)

Dr. KOBORI Toshihide

国土交通省国土技術政策 総合研究所河川研究部大 規模河川構造物研究室 長、博士(工学) Dr. KONDO Masafumi