谷埋め高盛土の地震時変形挙動に関する解析手法の検討

1. はじめに

近年の大地震において、谷部を横断する道路盛 土が大規模崩壊し、震後の道路交通機能の確保に 支障となる事例が報告されている¹⁾。このような 被災が生じない安全・安心な道路盛土とするため には、地震による盛土の変形挙動の把握、新設盛 土の適切な設計法、既設盛土に対する合理的な耐 震補強工法の開発とともに、特に既設盛土の耐震 性の診断が可能な解析手法の提案が必要である。

土木研究所では、谷埋め高盛土の耐震性の把握 及び対策工の効果等について、遠心力載荷実験に より検討を行ってきた²⁾。これにより耐震性向上 のための締固め、排水等の設計、既設盛土に対す る耐震補強法の検討とともに、特殊な室内試験や 解析パラメータを必要とせず、現場で活用可能な 簡易な解析手法の検討を進めている。

盛土など土構造物の地震時変形解析を行う手法 としては種々の方法があるが、盛土の変形には盛 土内の地下水位以下の繰返しせん断が大きく影響 することから、河川堤防の地震時変状解析で実績 のある、過剰間隙水圧の上昇を考慮して地盤剛性 を低下させた上で静的な解析を行う手法(自重解 析)を用いて、過年度実施した谷埋め高盛土の遠 心力載荷模型実験を模擬した解析を行い、その適 用性等について検討を行った。

2. 谷埋め高盛土の二次元変形解析

2.1 解析対象とする遠心力載荷実験の概要

これまでに土木研究所では、谷埋め高盛土の遠 心力載荷実験により、盛土の締固め度、盛土内水 位、盛土高等による地震時の変形挙動の違い及び 変状対策工の効果について検討を行ってきた。ま た、発生土の有効活用などによる盛土材料の多様 化を考慮して、盛土材料の粒度(細粒分含有率 Fc等)を変化させた実験により、盛土材料物性 の影響についても検討を行ってきた。

これらの実験を、二次元静的自重変形解析

東 拓生·加藤俊二·佐々木哲也

「ALID」³⁾を用いて解析し、実験結果と解析結果 の比較を行った。図·1に解析対象とした遠心力載 荷実験の模型と解析モデルを、表·1に解析ケース 及び解析パラメーター覧を示す。解析ケースのう ちCASE1~6は、江戸崎砂(Fc=6.9%程度)を盛土 材料とした実験を対象とした。また、CASE7~ 11は、江戸崎砂に細粒土(SA·400)を1:1で混合 した土(Fc=57%)や、江戸崎砂を粗粒分と細粒分 に分級し、それらの混合比率を変化させて粒度調 整した土(Fc=20~56%)を盛土材料とした実験 を対象とした。さらに、CASE12~16については、 基盤排水工、ふとんかご工などによる地震時変状 対策工を施工した実験を、CASE17は盛土高さを 高くし、基盤排水工を施工した実験を対象として 解析を行った。

2.2 解析方法

解析を行うにあたり、遠心力載荷実験で盛土材 料として使用した土について、圧密非排水三軸圧 縮試験(CUB試験)及び繰返し非排水三軸試験 を行い、粘着力c、内部摩擦角φ、弾性係数E及 び繰返しせん断強度比R_Lを求めた。弾性係数E ひいては、後述するせん断剛性低下率の計算にお けるせん断弾性係数の定義に従い、3段階の拘束 圧におけるCUB試験により得られた応力-ひず み関係から、せん断ひずみγ=0.1%における割線 勾配として算出した。一般的に弾性係数Eについて Janbu式により平均主応力omの依存性を表現でき ることから、Janbu式の基準剛性kとパラメータ nを、CUB試験結果をもとに算出し、次式により せん断弾性係数Gを算出した。

$$E = k \left(\frac{\sigma_m}{P_a}\right)^n \qquad (1)$$

$$G = \frac{E}{2(1+\upsilon)} \qquad (2)$$

Pa:大気圧 (=98kN/m²) u:ポアソン比

Analysis Method on the Behavior of Mountain Path Embankments during an Earthquake

地震時の剛性低下を考慮しない盛土内水位以浅 については、土の降伏条件にMohr-Coulombの破 壊 基 準 を、 塑 性 ポ テ ン シ ャ ル 関 数 に Drucker-Pragerの式を適用した弾・完全塑性モデル「改良 MC/DPモデル³⁾ により弾塑性挙動を表現した。

盛土内水位以深の盛土層については、繰返しせ ん断強度比RLを設定し、所定の地震外力(繰返 しせん断応力比)との関係から液状化に対する抵 抗率FLを計算し、このFLに基づきせん断剛性を 低下させた。せん断剛性の低下は、安田・稲垣ら が種々の物性の土に対して繰返しせん断後に単調 載荷を行う試験により求めたFLごとのRLと低下 せん断剛性比G1/o'。関係4)に対して、図-2に示す 豊田らが過去の河川堤防の被災事例を元に FL<0.7における低下せん断剛性比の設定に改良 を加えた方法⁵⁾を用いて表現した。ここでR_Lに

	解析 ケース名	対策工	盛土高 (m)	水位	盛土材料	締固め度 D _C (%)	細粒分含有率 F _C (%)	繰返しせん断 強度比 R _L	加振最大 加速度 (gal)	粘着力 C (kN/m ²)	せん断抵抗角 φ(°)
	Case 1	無	18.4	低	江戸崎砂	85	6.9	0.267	436.0	0.6	33.
	Case2	無	18.4	刯	江戸崎砂	90	6.9	0.322	727.5	0.9	35.
ĺ	Case3	無	18.4	高	江戸崎砂	85	6.9	0.267	994.2	0.6	33.
ĺ	Case4	無	18.4	高	江戸崎砂	82	6.9	0.221	606.9	0.0	3
ĺ	Case5	無	18.4	中	江戸崎砂	82	6.9	0.221	804.6	0.0	3
ĺ	Case6	無	18.4	低	江戸崎砂	82	6.9	0.221	643.4	0.0	3
ĺ	Case7	無	18.4	中	江戸崎砂+SA400	90	57.1	0.286	722.8	4.3	42
	Case8	無	18.4	臣	江戸崎砂+SA400	85	57.1	0.240	799.2	3.5	38.
	Case9	無	18.4	低	粒度調整江戸崎砂	85	51.3	0.258	1242.5	1.7	22.
	Case 10	無	18.4	低	粒度調整江戸崎砂	85	20.8	0.397	711.9	13.0	30.
	Case11	無	18.4	低	粒度調整江戸崎砂	85	56.1	0.276	924.9	39.1	16.
	Case12	基盤排水(硅砂4号)	18.4	刯	江戸崎砂	82	6.9	0.221	660.8	0.0	3
	Case13	基盤排水(硅砂3号)	18.4	Φ	江戸崎砂	82	6.9	0.221	502.6	0.0	3
ĺ	Case14	ふとんかご	18.4	高	江戸崎砂	82	6.9	0.221	538.3	0.0	3
ĺ	Case15	ふとんかご	18.4	高	江戸崎砂	85	6.9	0.267	414.6	0.6	33.
ĺ	Case16	ふとんかご+抑え盛土	18.4	中	江戸崎砂	82	6.9	0.221	791.6	0.0	3
ĺ	Case17	基盤排水(硅砂3号)	22.9	高	江戸崎砂	82	6.9	0.221	592.2	0.0	3

表・1 各解析ケースの主なパラメーター覧

し非排水せん断 強度試験と遠心 力載荷実験にお ける応力状態等 が異なると考え られることか ら、遠心力載荷 o 実験から累積損 傷度法を適用し て逆算により求 めた。具体的な 手順は以下のと おりである。

まず遠心力載図-2 FLが低い範囲の低下せん断剛性比 の設定方法5) 荷実験で大きな

変形量が発生した5ケースについて、図-3に示す とおり実験模型に設置した加速度計(図-1(a)の A5とA7)の計測値の時刻歴を元に繰返しせん断 応力比SRの時刻歴を算出する。加速度計A5近傍 の盛土模型のせん断ひずみγ=7.5%(一般に繰返 しせん断強度試験において繰返しせん断破壊を判 断するせん断ひずみ)に達する時刻を、実験時に 撮影した動画の画像解析から算定し、その時刻ま での繰返しせん断応力比SRの時刻歴をパルス化 する。このパルスを用いて、繰返し回数N-繰返 しせん断応力比Sr関係の曲線式(図-3中に示す双 曲線式)を調整しながら累積損傷度Dを計算し、 D=1となる曲線式を求め、N=20回におけるSRを RLとした。この計算方法で求めたRLは、繰返し せん断強度試験で得られたRLに対して概ね2.0~ 3.4倍程度となったことから、解析に用いるRLは

> 繰返しせん断強度試験で得られたRLの 2.0倍に設定することとした(表・1に示す RLは、繰返しせん断強度試験で求めたRL に2.0倍した値)。

地震外力については、遠心力載荷実験 で計測された盛土模型天端中央(図-1(a) の加速度計A11)の最大加速度を用い、 盛土天端から下方に1-0.015z(z:盛土天 端からの深度)により低減する方法で与 えた。実験ではタイプⅡ地震動である神 戸海洋気象台N-S波(1995年兵庫県南部 地震)を使用したことから、解析におい

てもタイプⅡ地震動に対する地震動による補正係 数CwによりRLを補正する計算を行った。

盛土内水位については、遠心力載荷実験の加振 直前の間隙水圧分布から求めた水位を設定して解 析を行った。

地山については、実験ではアルミと石膏により 構築しており、解析では剛体として計算を行った。 また、対策工(基盤排水層、ふとんかご)につい ても剛体とし、ふとんかごの底面及び背面(盛土 と接している辺)には粘着力0、せん断抵抗角 35°のジョイント要素を設定した。

以上の条件を設定した解析モデルに対して ALIDによる自重解析を行うことで、地震時の変 形量等を算出した。

2.3 解析結果

図・4に解析結果の例として、CASE3及び CASE15の解析による盛土の変形図及び実験にお ける変形状況を示す(以降、実験の各種寸法及び 変位量等については、実物換算で表記する)。盛 土材料に江戸崎砂を用い盛土内水位を高くした CASE3については、実験での沈下量が天端で

図-4 解析結果と実験時の変形状況の例

1.25m、法肩で1.67m程度であったが、解析では 天端で1.5m、法肩で1.65mとなっており、概ね 実験と整合した。一方、CASE3と同様の盛土条 件にふとんかご2段による対策工を設置した Case15については、実験では沈下量が天端で 0.2m、法肩で0.68m程度と無対策の実験ケース より変位量が抑制されているが、解析でも沈下量 が天端0.55m、法肩0.7mと変形状況は実験と概 ね整合しており、対策工の効果についても表現さ れた。ただし、両ケースとも法尻の水平変位量は、 解析が実験より小さい結果となった。

図-5に、全ケースの解析と実験の変形量の関係 を示す。解析による天端及び法肩の沈下量は、実

験結果と比較してやや大きくなるものの、ばらつ きは少ない結果となった。一方、法尻の水平変位 量はばらつきが大きく、解析による変位が実験に 比べて抑制されているケースがみられる。実験で は地山と盛土の接合部は、摩擦抵抗はあるものの 滑動できるが、解析では盛土モデル底面が剛体で ある地山に結合しているため、法尻に近い範囲の 変形量が抑制されたものと推測される。

図-6に無対策のケースの締固め度Dc、水位と 天端沈下量の関係を示す。Dcに着目すると、Dc が低くなると沈下量が増大し、第1小段(下段) 直下での水位と天端沈下量の関係をみると、水位 が高いケースで変形量が大きく、特にDcが低い ケースで変形量が急増する傾向があり、解析にお いてもその傾向を表現できている。また、細粒分 が多いケースについても、実験では沈下量が抑制 される傾向がみられるが、解析においてもその傾 向を表現できている。

2.4 まとめ

谷埋め高盛土の動的遠心力載荷実験を模擬した 二次元静的自重変形解析による解析を行った結果、 以下の結果となった。

(1) 無対策、地震時変状対策工を施したケースと もに、実験で見られた変形状況及び変形量抑制効 果を解析でも概ね表現できた。

(2) 天端及び法肩の沈下量については、解析結果 が実験結果よりやや大きくなるものの、ばらつき は少ない結果となった。

(3) 法尻の水平変位量については、解析結果のば らつきが大きく、実験結果に比べて変位量が小さ くなるケースがみられた。これは盛土モデル底面 が剛体である地山に結合しており、法尻付近の変 形量が抑制されたことが原因と推定される。

(4) 無対策のケースでは、締固め度が低く、盛土 内水位が高いケースで変形量が大きくなるととも に、細粒分が多いケースでは変形量が抑制された が、解析でもその傾向が表現できた。

3. おわりに

今回の解析で用いたALIDは、特殊な室内試験 やパラメータを必要とせず、簡便に解析が可能な 手法であり、谷埋め高盛土の地震時変状の評価手 法として現場に適用できる可能性を確認できた。

今回の解析では、低下せん断剛性の設定に既往 の研究成果を用いたが、対象とする盛土材料に対 して繰返し載荷後に単調載荷を行う試験を行うこ とで、より解析精度を高めることができるか、今 後試験を行い検証していきたい。

また図・2のとおり、繰返しせん断強度比RLが 低い範囲で、RLの推定精度が低下せん断剛性に 及ぼす影響が大きい。今回は、対象とした遠心力 載荷実験の盛土模型内部での計測値から推定した が、実際の盛土の解析を行う際にRLをどのよう に設定すべきか、今後十分な検討が必要である。

参考文献

- 例えば、国土交通省国土技術政策総合研究所・独立 行政法人土木研究所・独立行政法人建築研究所:平 成19年(2007年)能登半島地震被害調査報告書、国 総研資料第438号・土研資料第4087号・建築研究所 資料第111号、pp.102~157、2008.2
- 加藤俊二、佐々木哲也:山岳盛土の地震時変形挙動 に関する遠心力載荷模型実験、土木技術資料、第61 巻、第8号、pp.28~31、2019
- (株)地盤ソフト工房:ALID/Win 地盤土の構成則(第 3版)、2016.5
- 安田進、稲垣太浩、長尾和之、山田真一、石川敬祐:液状化を含む繰返し軟化時における種々の土の変形特性、第40回地盤工学研究発表会、pp.525~526、2005.7
- 5)豊田耕一、杉田秀樹、石原雅規:河川堤防の地震被 害事例に基づく液状化地盤の剛性に関する検討、第 4回日本地震工学会大会-2005梗概集、pp.226~ 227、2005.11

土木研究所地質・地盤研究グループ 土質・振動チーム 主任研究員 AZUMA Takuo

土木研究所地質・地盤研究グループ 土質・振動チーム 主任研究員 KATO Shunji

佐々	木哲也
----	-----

土木研究所地質・地盤研究グループ 土質・振動チーム SASAKI Tetsuya